PGE - GIE2 - UEF ENGA

Module Turbomachines à écoulement incompressible

Florent Ravelet¹

Laboratoire d'Ingénierie des Fluides et des Systèmes Energétiques

¹Arts et Métiers - Sciences et Technologies

13 février 2023

Notions générales sur les turbomachines : résumé § 1

Définitions et classification

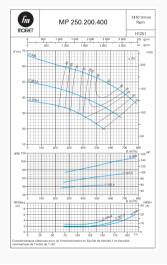
But d'une turbomachine à fluide : réaliser un échange d'énergie entre un fluide et un dispositif mécanique. Le transfert peut s'effectuer :

- dispositif mécanique vers fluide ⇒ machine *génératrice* (pompes, ventilateurs, soufflantes et compresseurs...)
- fluide vers partie mécanique ⇒ machine réceptrice ou motrice (moteurs hydrauliques, turbines hydrauliques ou à gaz, roulette du dentiste, éoliennes...)

Convention thermodynamique : point de vue du fluide, i.e. E>0 si fournie au fluide.

- Variation état thermodynamique (pression, température, enthalpie massique, masse volumique, ...).
- Modèle de comportement du fluide :
 - · Liquides, gaz en écoulement à faible vitesse par rapport à la vitesse du son : écoulement incompressible;
 - o Gaz subissant de grandes détentes ou compressions, en écoulement rapide : écoulement compressible.

Courbes caractéristiques d'une pompe centrifuge (machine génératrice en écoulement incompressible).



 Energie mécanique totale du fluide (déf. par unité de masse) :

$$e_{mech} = \frac{\rho}{\rho} + \frac{1}{2}u^2 + gz \left(J.kg^{-1}\right)$$

• Pour l'hydraulique : charge hydraulique H

$$\mathcal{H} = \frac{p}{\rho g} + \frac{u^2}{2g} + z \left(J.N^{-1} \text{ ou m.c.e} \right)$$

- $gH_{MTpump} = \left(e_{mech}^{out} e_{mech}^{in}\right)$
- H_{MTpump} = f(Q_v) pour un fluide donné, à vitesse de rotation donnée;
- Puissance sur arbre $P_a = f(Q_v)$;
- rendement global :

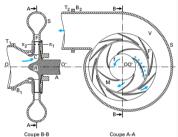
$$\eta_g = rac{
ho_{
m g} H_{
m MTpump} imes Q_{
m V}}{P_{
m a}}$$

• $NPSH = f(Q_v)$: charge hydraulique totale minimale pour ne pas caviter.

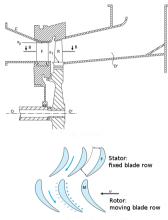
Paramètres dimensionnants, éléments constitutifs d'une turbomachine, similitude

Turbomoteur d'hélicoptère illustrant la possible présence de sous-systèmes ou étages élémentaires. De gauche à droite : compresseur axial (a), compresseur radial (b), turbines axiales Haute Pression (c et d), turbine axiale Basse Pression (e).

Description de deux turbomachines mono-étagées typiques



- Pompe centrifuge
- Partie active mobile, rotor: roue avec n_r aubes (pales ou encore ailettes) (M).
- Partie fixe, stator : diffuseur avec n_f ailettes (F) et volute (V).
- Symétries d'ordre n_r et n_f par rapport à l'axe de rotation.

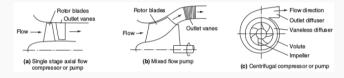


Turbine axiale (voir module TFC)

Avertissement

• A partir de cette planche, nous nous limitons au cas des pompes hydrauliques.

Classification des pompes hydrauliques



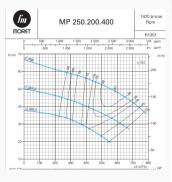
- Il existe des pompes axiales, mixtes ou hélico-centrifuges et centrifuges.
- Pourquoi?
- Ont-elles des comportements caractéristiques différents?
- Comment choisir une pompe adaptée à un besoin?
- Comment adapter une pompe à un besoin?

Paramètres dimensionnants et analyse dimensionnelle

- On génère l'élévation de pression totale Δp_t,
- pour véhiculer un débit Q_V d'un fluide de densité ρ et viscosité dynamique μ,
- en faisant tourner une roue de rayon R_e
 à la vitesse angulaire ω,
- munie d'aubages aux caractéristiques géométriques variées, que l'on peut définir avec un jeu de nombres adimensionnels geom en prenant Re comme échelle de longueur
- en fournissant sur l'arbre une puissance \mathcal{P} .

 \Rightarrow On cherche à exprimer $\Delta p_t = f(Q_v, \omega, R_e, \rho, \mu, \text{geom})$

 \Rightarrow et $\mathcal{P} = f_2(Q_v, \omega, R_e, \rho, \mu, \text{geom})$



Paramètres dimensionnants et analyse dimensionnelle

- Les grandeurs fondamentales utilisées sont la masse \mathcal{M} , la longueur \mathcal{L} et le temps \mathcal{T} .
- Choix échelle de longueur \mathcal{L} : R_e
- Choix échelle de masse \mathcal{M} : $ho R_{\mathrm{e}}^{3}$
- Choix échelle de temps \mathcal{T} : ω^{-1}
- Δp_t a pour dimension $\mathcal{ML}^{-1}\mathcal{T}^{-2}$
- Q_v a pour dimension $\mathcal{L}^3\mathcal{T}^{-1}$
- μ a pour dimension $\mathcal{ML}^{-1}\mathcal{T}^{-1}$

Paramètres dimensionnants et analyse dimensionnelle

On a donc, sous forme adimensionnelle:

$$\frac{\Delta p_t}{\rho R_e^2 \omega^2} = f\left(\frac{Q_v}{R_e^3 \omega}, 1, 1, 1, \frac{\mu}{\rho R_e^2 \omega}, \text{geom}\right)$$

- Les trois premiers nombres sans dimension sont :
 - $\Psi = \frac{\Delta p_t}{\alpha R^2 \omega^2}$ le coefficient de pression,
 - $\Phi = \frac{Q_V}{R_e^3 \omega}$ le coefficient de débit ⁱⁱⁱ,
 - $\mathcal{R} = \frac{\rho R_{e}^{2} \omega}{\mu}$ le nombre de Reynolds.
- La courbe caractéristique d'une machine peut s'exprimer sous forme adimensionnelle :

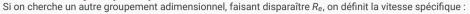
$$\Psi = f(\Phi, \mathcal{R}, \text{geom})$$

 Dans la plupart des cas industriels, en fluide peu visqueux, à grande dimension, R >> 1: la dépendance en R est négligeable :

$$\Psi = f(\Phi, \text{geom})$$

• Le groupement $R_e\omega=U$ a une signification physique particulière. Laquelle? (Remarquez que $\Psi=\frac{\Delta p_t}{\rho U^2}$, $\Phi=\frac{Q_y}{R_z^2}U$ et $\mathcal{R}=\frac{\rho R_eU}{\mu}$)

Vitesses et Rayon spécifiques

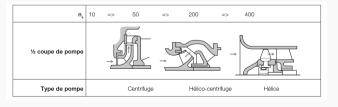


$$\Omega = rac{\omega Q_{
m v}^{1/2}}{\left(rac{\Delta p_t}{
ho}
ight)^{3/4}}$$

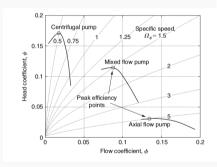
On utilise également le « nombre de tours spécifique » nsq, qui n'est pas adimensionnel $nsq = \frac{NQ_v^{1/2}}{(H_{MT})^{3/4}}$ avec N en rpm.

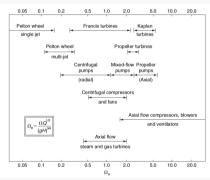
Attention : la notion de vitesse spécifique n'est utilisée qu'au point nominal (de rendement maximum). A vitesse angulaire constante :

- faible $\Omega \to \text{fort } \Delta p_t$ et faible Q_v : on utilisera de préférence une machine centrifuge;
- et fort $\Omega \to \text{faible } \Delta p_t$ et fort Q_v : on utilisera de préférence une machine axiale.

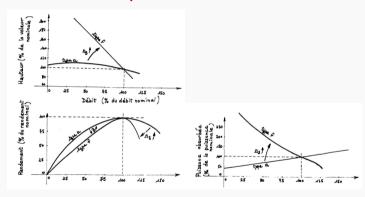


Allure générale des caractéristiques en fonction de Ω





Allure générale des caractéristiques en fonction de Ω



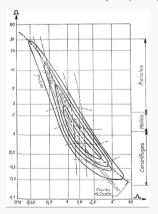
En passant de la pompe a (haute pression) à la pompe f (pompe hélice), on observa des formes de caractéristiques très différentes. Nous attirerons l'attention sur le fait que les pompes à grande vitesses psécifique absorbent aux faibles débits une puissance mécanique supérieure à celle du point optimal. Il est donc nécessaire de prévoir un moteur de puissance supérieure lors de l'utilisation de ces pompes.

Vitesses et Rayon spécifiques

Si on cherche un autre groupement adimensionnel, faisant disparaître ω , on définit le rayon spécifique :

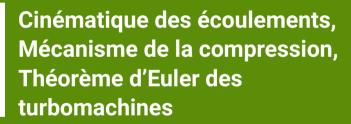
$$\Lambda = \frac{R_{\mathsf{e}} \left(\frac{\Delta p_{\mathsf{t}}}{\rho}\right)^{1/4}}{Q_{\mathsf{v}}^{1/2}}$$

On observe une corrélation entre rendement, Vitesses et Rayon spécifiques (diagramme de Cordier).

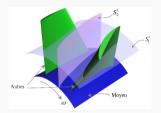


Conclusions

- Les pompes axiales, mixtes ou hélico-centrifuges et centrifuges ne répondent pas au même besoin relatif en termes de débit/pression.
- A partir d'un cahier des charges, la vitesse spécifique Ω oriente vers un premier type de pompe.
- A partir d'un cahier des charges, le diagramme de Cordier oriente vers une dimension optimale.
- Si une pompe existante ne convient pas exactement, on peut modifier son point de fonctionnement optimal par similitude en vitesse angulaire ou par similitude géométrique.
- Elles ont des comportements caractéristiques différents (pente des courbes):
 Ce ne sont pas les mêmes forces qui dominent l'échange d'énergie dans les machines centrifuges et axiales (à suivre...)



Décomposition bidimensionnelle de la géométrie (1/3)

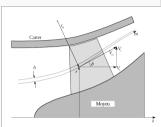


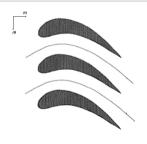
- Décomposition en deux « vues » :
 - ∘ Vue « méridienne » : Plan r : z

$$dm = \sqrt{dr^2 + dz^2}$$

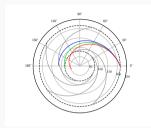
- Vue « aube-à-aube sur nappe de courant » :
 - \blacksquare surface $r\theta$; m (machine axiale)
 - transfo conforme $\eta = \int_0^m \frac{1}{r} dm$ et θ (machines mixtes)
- Angle de centrifugation

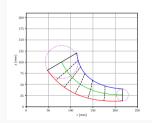
$$\delta = \arctan\left(\frac{dr}{dz}\right)$$

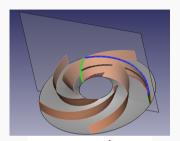


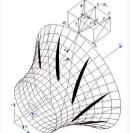


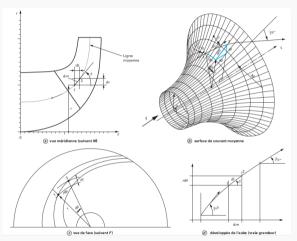
Décomposition bidimensionnelle de la géométrie (2/3)











Décomposition cinématique

- Vitesse absolue \vec{C}
 - décomposée en vitesse méridienne débitante :

$$C_m = \sqrt{C_r^2 + C_z^2}$$

et vitesse giratoire

$$C_{\theta}$$

• Vitesse d'entrainement $\vec{U} = r\omega \vec{e}_{\theta}$, vitesse relative \vec{W} :

$$\vec{C} = \vec{U} + \vec{W}$$

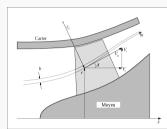
• Angle absolu d'écoulement :

$$\alpha = \arctan\left(\frac{C_{\theta}}{C_{m}}\right)$$

• Angle d'écoulement relatif :

$$\beta = \arctan\left(\frac{W_{\theta}}{W_{m}}\right) = \arctan\left(\frac{W_{\theta}}{C_{m}}\right)$$

$$\tan \beta = \tan \alpha - \frac{U}{C_m}$$



Pour la nappe de courant d'épaisseur b, surface débitante $2\pi rb$:

$$dQ = 2\pi rb C_m$$

Rappels sur les profils aérodynamiques

I : Corde du profil

Ligne moyenne : Arc de cercle, parabole, autre..

h_{max} /I : Cambrure géométrique

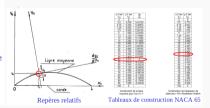
 $0\% \le h_{max} / I \le 20\%$

e max /I : Épaisseur relative

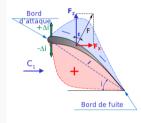
 $4\% \leq e_{\text{ max}} \, / I \leq 20\%$

b : Envergure

 $\lambda = b / I$: Allongement



Efforts aérodynamiques et coefficients portance/trainée

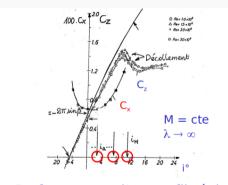


$$C_z = \frac{\mathbf{F}_z}{\rho \frac{C_1^2}{2} \mid b}$$
 Coefficient de portance

$$C_x = \frac{\mathbf{F}_x}{\rho \frac{C_1^2}{2} \mid b}$$
 Coefficient de traînée

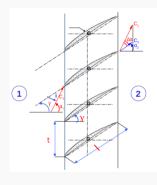
Coefficients adimensionnels

Polaire d'un profil



Performances d'un profil réel

Définition d'une grille d'aubes



- Profil (NACA 65-xx-yy)
- Angle de calage γ
- Angle d'incidence i :

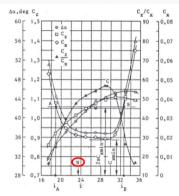
$$\mathsf{i} = \alpha_1 - \gamma$$

- Pas des profils t
- Serrage $\sigma = I/t$

Déviation
$$\Delta \alpha = \alpha_1 - \alpha_2$$

Exemple de grille d'aubes

Comportement d'une grille d'aubes stationnaire (1/2)

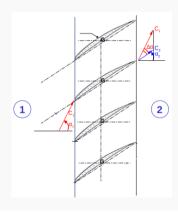


NACA 65-27-10 avec α_1 = 45°; σ = 1

Comportement d'une grille d'aubes stationnaire (2/2)

- Domaine d'utilisation de la grille de i_A (décollement sur l'intrados du profil) à i_B (décollement sur l'extrados du profil).
- Valeurs de i_A et i_B : perte (C_x) égale à deux fois la perte minimale.
- Suivant les auteurs (Carter, Keller, Lieblein, Mellor, ...), l'angle d'incidence optimal sera choisi aux points suivants :
 - o point A : correspondant aux pertes minimales
 - o point C: maximum de finesse
 - o point K : correspondant à 80% de la déflexion maximale
 - point N : répartition de pression extrados présentant les plus faibles variations (Constructions de machines silencieuses et résistantes à la cavitation).

Grille d'aubes fixe en fluide parfait



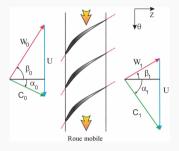
• Théorème de Bernoulli entre 1 et 2 :

$$\frac{p_1}{\rho} + \frac{C_1^2}{2} = \frac{p_2}{\rho} + \frac{C_2^2}{2} = \text{cte}$$

- Pas d'apport d'énergie
- Compression si ralentissement, détente si accélération :

$$\frac{p_2}{\rho} - \frac{p_1}{\rho} = -\left(\frac{C_2^2 - C_1^2}{2}\right)$$

Grille d'aubes mobile en fluide parfait



• Théorème de Bernoulli en référentiel tournant entre 0 et 1 :

$$\frac{p_1}{\rho} + \frac{W_1^2}{2} = \frac{p_0}{\rho} + \frac{W_0^2}{2} = \text{cte}$$

• Compression ici, car $W_0 > W_1$:

$$\frac{p_1}{\rho} - \frac{p_0}{\rho} = -\left(\frac{W_1^2 - W_0^2}{2}\right) > 0$$

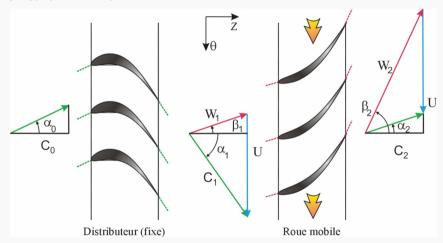
 Dans le référentiel du laboratoire, pour ce cas :

$$C_1 > C_0$$

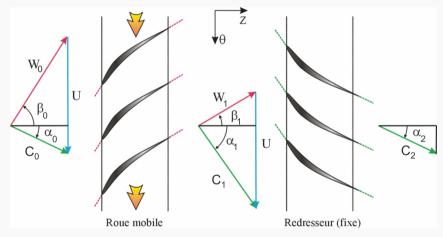
Donc:

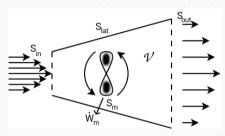
$$\left(\frac{p_1}{\rho} + \frac{C_1^2}{2}\right) - \left(\frac{p_0}{\rho} + \frac{C_0^2}{2}\right) > 0$$

On a apport d'énergie au fluide!



Etage typique 2 : compression ou détente?





- On prend le bilan de quantité de mouvement;
- On fait le produit scalaire avec \vec{C} ;
- ◆ ⇒ Théorème de l'énergie cinétique :
- « La variation d'énergie cinétique par unité de temps est égale à la somme de la puissance de tous les efforts extérieurs et de la puissance des efforts intérieurs ».
- En système ouvert : tenir compte des flux, et du travail des forces de pression sur les sections d'entrée/sortie.

Rappel: bilan d'énergie mécanique en système ouvert (2/2)

• En version stationnaire :

$$\dot{m}\Delta_{ln}^{out} \left(\frac{\rho}{\rho} + \frac{1}{2}C^2 + gz\right) = \dot{W}_m + \dot{W}_{comp} - \dot{W}_{mech \, loss}$$

$$\stackrel{\text{energie mécanique}}{\stackrel{\text{energie mécanique}}{\stackrel{\text{out}}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}}}{\stackrel{\text{out}}$$

Puissance des efforts intérieurs, somme de deux termes :

$$\dot{W}_{comp} = \int_{\mathcal{V}} p \operatorname{div}(\vec{c}) dv \ (= 0 \text{ en \'eclt.incomp.})$$
 $\dot{W}_{mech\,loss} = \int_{\mathcal{V}} \left(\vec{\sigma}_{v} : \vec{\nabla} \vec{u} \right) dv$

- Dissipation d'énergie mécanique d'origine visqueuse ($\dot{W}_{mech loss} \ge 0$).
- On peut tout ramener à l'unité de masse en divisant par \dot{m} :

$$\Delta_{ln}^{\text{out}} \left(\frac{\rho}{\rho} + \frac{1}{2}C^2 + gz \right) = \underbrace{w_m}_{\text{travail technique massique}} - \underbrace{w_{\text{mech loss}}}_{\text{dissipation massique}} \tag{2}$$

Rappel : théorème de l'énergie cinétique en référentiel tournant (non galiléen)

- Les lois de la dynamique sont valables en référentiel galiléen.
- Le bilan de quantité de mouvement écrit dans le repère relatif (avec la vitesse $\vec{W} = \vec{C} r\omega \vec{e}_{\theta}$) sont complétées avec les accélérations d'entrainement et de Coriolis.
- Accélération d'entrainement centripète : $\vec{a}_E = -r\omega^2 \vec{e}_r$
- Accélération de Coriolis : $\vec{a}_C = 2\omega \vec{e}_z \times \vec{W}^{\text{iv}}$
- ullet Travaux associés aux forces fictives (par unité de masse $ec{f}_{ extit{fictive}} = -ec{a}_{ extit{E,C}}$):
 - ∘ déplacement élémentaire Wdt :
 - \circ pas de travail de Coriolis car $\vec{a}_C \cdot \vec{W} = 0$
 - travail de la force centrifuge $\delta w_{\text{centrifuge}} = r\omega^2 \vec{\mathbf{e}}_r \cdot \vec{\mathbf{W}} dt = r\omega^2 dr$
 - \circ Elle dérive d'un potentiel! $e_{p,centrifuge} = -\frac{1}{2}U^2$

Théorème d'Euler des turbomachine, démonstration 1

Application à une grille d'aube mobile

Analyse dans le référentiel du labo :

$$\Delta_{ln}^{out} \left(\frac{\rho}{\rho} + \frac{1}{2}C^2 + gz \right) = w_m - w_{mech \, loss}$$
 (3)

• Analyse dans le référentiel relatif (ou les forces sur la roue ne travaillent pas) :

$$\Delta_{in}^{out} \left(\frac{\rho}{\rho} + \frac{1}{2} W^2 + gz - \frac{1}{2} U^2 \right) = -w_{mech \, loss} \tag{4}$$

• On combine:

$$w_m = \Delta_{in}^{\text{out}} \left(\frac{1}{2} C^2 - \frac{1}{2} W^2 + \frac{1}{2} U^2 \right)$$
 (5)

• On montre à partir du triangle des vitesses que $\left(\frac{1}{2}C^2-\frac{1}{2}W^2+\frac{1}{2}U^2\right)=UC_{\theta}$, donc :

$$w_m = \Delta_{in}^{out} (UC_\theta)$$
 (6)

C'est le théorème d'Euler des turbomachines.

Théorème d'Euler des turbomachine, démonstration 2

Moment of momentum

- Fluid enters at a flow rate \dot{m} at r_1 with tangential velocity $C_{\theta 1}$.
- It leaves the control volume at r_2 with tangential velocity $C_{\theta 2}$.
- Moment of momentum, steady version, along a streamline:

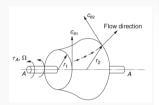
$$\tau_a = \dot{m} \left(r_2 C_{\theta 2} - r_1 C_{\theta 1} \right)$$

• Power:

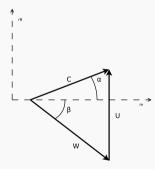
$$au_a\omega=\dot{m}\left(U_2C_{\theta2}-U_1C_{\theta1}
ight)$$

 Link to energy exchange (steady process, adiabatic):

$$\Delta h_0 = \Delta \left(U C_\theta \right)$$



Rothalpy



 Along a streamline, the quantity called rothalpy is constant:

$$I = h_0 - UC_\theta = \operatorname{cte}$$

• Using the velocity triangle:

$$I = h + \frac{W^2}{2} - \frac{U^2}{2} = \text{cte}$$

Different contributions :

$$\Delta h_0 = \Delta \left(UW_\theta \right) + \Delta \left(U^2 \right)$$

 Aerodynamic forces work + Centrifugal forces work.

En conclusion

- 1. Grille d'aubes fixe :
 - o Pas d'apport d'énergie.
 - o C'est un transformateur d'énergie : Energie de vitesse (cinétique) en énergie de pression.
 - · Redresseur ou stator.
- 2. Grille d'aubes mobile :
 - o Fournit de l'énergie au fluide.
 - C'est un transformateur d'énergie : Energie mécanique en énergie de vitesse. (cinétique) et en énergie de pression.
 - Rotor