PGE - GIE2 - UEF ENGA

Module Turbomachines à écoulement incompressible

Florent Ravelet¹

Laboratoire d'Ingénierie des Fluides et des Systèmes Energétiques

¹Arts et Métiers - Sciences et Technologies

13 février 2023

Notions générales sur les turbomachines : résumé § 1

Définitions et classification

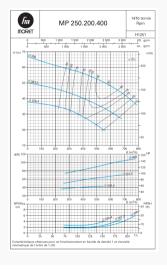
But d'une turbomachine à fluide : réaliser un échange d'énergie entre un fluide et un dispositif mécanique. Le transfert peut s'effectuer :

- dispositif mécanique vers fluide ⇒ machine *génératrice* (pompes, ventilateurs, soufflantes et compresseurs...)
- fluide vers partie mécanique
 partie mécanique

Convention thermodynamique: point de vue du fluide, i.e. E > 0 si fournie au fluide.

- Variation état thermodynamique (pression, température, enthalpie massique, masse volumique, ...).
- Modèle de comportement du fluide :
 - · Liquides, gaz en écoulement à faible vitesse par rapport à la vitesse du son : écoulement incompressible;
 - o Gaz subissant de grandes détentes ou compressions, en écoulement rapide : écoulement compressible.

Courbes caractéristiques d'une pompe centrifuge (machine génératrice en écoulement incompressible).



 Energie mécanique totale du fluide (déf. par unité de masse) :

$$e_{mech} = \frac{\rho}{\rho} + \frac{1}{2}u^2 + gz \left(J.kg^{-1}\right)$$

• Pour l'hydraulique : charge hydraulique H

$$\mathcal{H} = \frac{p}{\rho g} + \frac{u^2}{2g} + z \left(J.N^{-1} \text{ ou m.c.e} \right)$$

- $gH_{MTpump} = \left(e_{mech}^{out} e_{mech}^{in}\right)$
- H_{MT pump} = f(Q_v) pour un fluide donné, à vitesse de rotation donnée:
- Puissance sur arbre $P_a = f(Q_v)$;
- rendement global :

$$\eta_g = rac{
ho_{
m g} H_{
m MTpump} imes Q_{
m V}}{P_{
m a}}$$

• $NPSH = f(Q_v)$: charge hydraulique totale minimale pour ne pas caviter.

Paramètres dimensionnants, éléments constitutifs d'une turbomachine, similitude : résumé § 2

Etage élémentaire, paramètres adimensionnels

- Etage de compression :
 - Partie active mobile, **rotor**: roue avec n_r aubes (pales ou encore ailettes) (M).
 - Partie fixe, **stator**: diffuseur avec n_f ailettes (F) et volute (V).
- La courbe caractéristique d'une machine peut s'exprimer sous forme adimensionnelle :

$$\Psi = f(\Phi, \mathcal{R}, \text{geom})$$

Avec:

 $\Psi = \frac{\Delta p_t}{\rho R_s^2 \omega^2}$ le coefficient de pression,

 $\circ \ \Phi = \frac{Q_V}{R_A^8 \omega} \text{ le coefficient de débit,}$

 $\circ \ \mathcal{R} = \frac{\rho R_e^2 \omega}{\mu}$ le nombre de Reynolds.

Vitesse spécifique et rayon spécifique

- On définit :
 - o la vitesse spécifique :

$$\Omega = rac{\omega Q_{
m v}^{1/2}}{\left(rac{\Delta p_t}{
ho}
ight)^{3/4}}$$

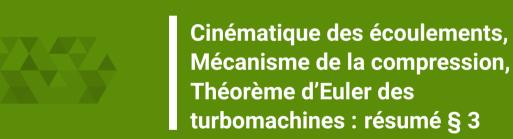
o le rayon spécifique :

$$\Lambda = \frac{R_{\rm e} \left(\frac{\Delta p_{\rm t}}{\rho}\right)^{1/4}}{Q_{\rm v}^{1/2}}$$

- $\Omega \lesssim 1$: machine centrifuge,
- $\Omega \gtrsim 3$: machine axiale,
- ullet Corrélation empirique sur le couple Ω ; Λ optimal (diagramme de Cordier).

Conclusions

- Les pompes axiales, mixtes ou hélico-centrifuges et centrifuges ne répondent pas au même besoin relatif en termes de débit/pression.
- ullet A partir d'un cahier des charges, la vitesse spécifique Ω oriente vers un premier type de pompe.
- A partir d'un cahier des charges, le diagramme de Cordier oriente vers une dimension optimale.
- Si une pompe existante ne convient pas exactement, on peut modifier son point de fonctionnement optimal par similitude en vitesse angulaire ou par similitude géométrique.
- Elles ont des comportements caractéristiques différents (pente des courbes): Ce ne sont pas les mêmes forces qui dominent l'échange d'énergie dans les machines centrifuges et axiales.



Décomposition bidimensionnelle de la géométrie et cinématique de l'écoulement

- Système de coordonnées cylindrique r, θ, z. Décomposition en deux « vues » :
 - $^\circ~$ Vue « méridienne » : Plan r ; z et coordonnée méridienne dm = $\sqrt{dr^2+dz^2}$ $^\circ~$ Vue « aube-à-aube sur nappe de courant » :
 - - \blacksquare surface $r\theta$: m (machine axiale)
 - transfo conforme $η = ∫_0^m \frac{1}{2} dm$ et θ (machines mixtes)
- Vitesse absolue \vec{C} , vitesse d'entrainement $\vec{U} = r\omega \vec{e}_{\theta}$, vitesse relative \vec{W} :
 - Composition des vitesses $\vec{C} = \vec{U} + \vec{W}$
 - o décomposée en vitesse méridienne débitante $C_m = \sqrt{C_r^2 + C_z^2} \vec{e}_m$ et vitesse giratoire $C_{\theta} \vec{e}_{\theta}$
 - Angle absolu d'écoulement $\alpha = \arctan\left(\frac{c_{\theta}}{c_{m}}\right)$
 - Angle d'écoulement relatif $\beta = \arctan\left(\frac{W_{\theta}}{W_{m}}\right) = \arctan\left(\frac{W_{\theta}}{C_{m}}\right)$

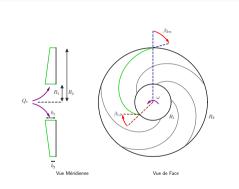
Fonctionnement des grilles d'aubes

- 1. Grille d'aubes fixe :
 - o Pas d'apport d'énergie.
 - o C'est un transformateur d'énergie : Energie de vitesse (cinétique) en énergie de pression.
 - Redresseur ou stator.
- 2. Grille d'aubes mobile :
 - o Fournit de l'énergie au fluide.
 - C'est un transformateur d'énergie : Energie mécanique en énergie de vitesse. (cinétique) et en énergie de pression.
 - o Rotor
- Théorème d'Euler des turbomachines (lien entre cinématique de l'écoulement et travail échangé par unité de masse w_m sur la roue):

$$W_m = \Delta_{in}^{\text{out}} (UC_\theta)$$
 (1)

Etude du fonctionnement de la roue d'une pompe centrifuge. Analyse des triangles de vitesse en entrée-sortie, débit d'adaptation, apport d'énergie (sans pertes)

Paramètres géométriques et de fonctionnement



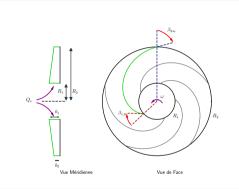
6 paramètres géométriques :

- A l'entrée : R_1 , b_1 , $\beta_{1,0}$
- A la sortie : R_2 , b_2 , $\beta_{2\infty}$

2 paramètres de fonctionnement :

- Vitesse angulaire ω (rad.s⁻¹)
- Débit volumique Q_v (m³.s⁻¹)

Paramètres déduits



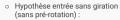
Surfaces débitantes :

- A l'entrée : $S_1 = 2\pi R_1 b_1$
- A la sortie : $S_2 = 2\pi R_2 b_2$

Vitesses débitantes

- A l'entrée : $C_{m,1} = Q_v/S_1$
- A la sortie : $C_{m,2} = Q_v/S_2$

Triangle des vitesses en entrée (1/2)



$$C_{\theta,1}=0$$

$$\vec{C_1} = C_{m,1}\vec{e_m} + 0\vec{e_\theta}$$

$$\circ \ \vec{U_1} = 0\vec{e_m} + R_1\omega\vec{e_\theta}$$

$$\circ \ \vec{C_1} = \vec{W_1} + \vec{U_1}$$

o D'où:

$$\tan \beta_1 = \left(\frac{W_{\theta,1}}{W_{m,1}}\right)$$

$$= \left(\frac{W_{\theta,1}}{C_{m,1}}\right)$$

$$= \left(\frac{U_1 - C_{\theta,1}}{C_{m,1}}\right)$$

$$= \left(\frac{R_1 \omega}{C_{m,1}}\right)$$

$$\tan \beta_1 = \left(\frac{2\pi R_1^2 b_1 \omega}{C_{m,1}}\right)$$



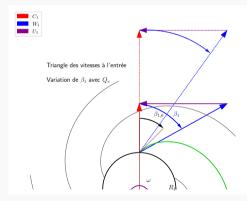
Triangle des vitesses en entrée (2/2)

- o Si Q_V augmente $\rightarrow \beta_1$ diminue
- o Si Q_V diminue $\rightarrow \beta_1$ augmente
- o Fonctionnement adapté si angle fluide = angle d'aubage :

$$\exists Q_{v,a} \mid \beta_1 = \beta_{1,0}$$

o Débit d'adaptation $Q_{V,a}$:

$$Q_{\mathsf{V},\mathsf{a}} = \left(\frac{2\pi R_1^2 b_1 \omega}{\tan\left(\beta_{1,0}\right)}\right)$$



Triangle des vitesses en sortie (1/2)

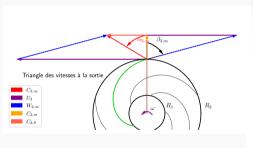
 Hypothèse d'Euler: en fluide parfait, avec un nombre d'aubages infini, l'écoulement en sortie est contraint à sortir avec une direction tangente aux aubages:

$$\beta_2=\beta_{2,\,\infty}$$

o A partir des définitions :

 $tan(\beta_{2,\infty})$

$$\begin{array}{rcl} & = & \frac{U_2 - C_{\theta,2,\infty}}{C_{m,2}} \\ \\ C_{\theta,2,\infty} & = & U_2 - C_{m,2} \tan{(\beta_{2,\infty})} \\ \\ & = & R_2 \omega - \frac{Q_V}{2\pi R_2 b_2} \tan{(\beta_{2,\infty})} \end{array}$$



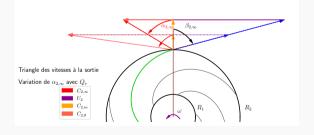
(2)

Triangle des vitesses en sortie (2/2)

o Théorème d'Euler des turbomachines (en fluide parfait, en nombre d'aubages infini, sans pré-rotation) :

$$w_{m,\infty} = gH_{MTth,\infty} = R_2\omega \left(R_2\omega - \frac{Q_V}{2\pi R_2b_2}\tan\left(\beta_{2,\infty}\right)\right)$$

- ∘ Si Q_V diminue → $C_{\theta,2,\infty}$ augmente. A débit nul, $gH_{MTth,\infty}(0) = (R_2\omega)^2$.
- \circ Si $Q_{\rm V}$ augmente $o C_{ heta,2,\infty}$ diminue. Débit maximum théorique tel que $H_{MT}=0$.



Conclusions partielles (sans pré-rotation)

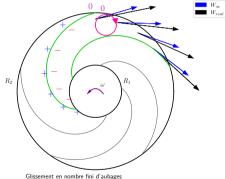
- L'entrée de la roue :
 - fixe le débit d'adaptation Q_{v,a};
 - o conditionne le débit maximal de la roue.
- La sortie de la roue :
 - o génère la hauteur manométrique totale due à la roue;
 - o conditionne le débit maximal:
 - o conditionne la pente de la courbe caractéristique.
- Après une roue centrifuge (angle $\delta=\pi/2$), l'écoulement débitant est radial, et il y a une composante giratoire $C_{\theta,2}$. La volute récupère et redresse l'écoulement, tout en convertissant une partie de l'énergie cinétique en pression.

Correction hypothèse d'Euler en sortie (1/2)

o Hypothèse d'Euler : en fluide parfait, avec un nombre d'aubages infini, l'écoulement en sortie est contraint à sortir avec une direction tangente aux aubages:

$$\beta_2 = \beta_{2,\infty}$$

o Nombre d'aubages fini : le fluide est moins contraint en sortie. Forces de Coriolis ⇒ écoulement secondaire (tourbillon contrarotatif entre deux pales) \Rightarrow déviation de $\vec{W_2}$ en sens inverse de la rotation.



o Conséquences :

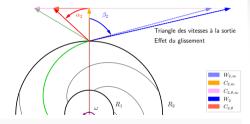
$$\begin{array}{cccc} \beta_2 & \geq & \beta_{2,\infty} \\ C_{\theta,2} & \leq & C_{\theta,2,\infty} \\ w_m & \leq & w_{m,\infty} \end{array}$$

- o L'écart est de l'ordre de 5° à 10°.
- o Modélisation : coefficient de glissement μ défini par

$$\mu = \frac{C_{\theta,2}}{C_{\theta,2,\infty}}$$

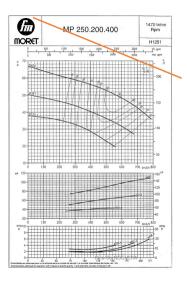
 Il existe de multiples corrélations empiriques pour μ. On utilisera en TD la corrélation de Pfleiderer (avec Z le nombre d'aubages) :

$$\mu = \frac{1}{1 + \frac{1.2\left(1 + \cos\left(\beta_{2,\infty}\right)\right)}{Z\left(1 - \left(\frac{R_1}{R_2}\right)^2\right)}}$$



- \circ On remarque que 0 < μ < 1.
- \circ Si Z augmente, $\mu \to 1$ (en nombre d'aubage infini $\beta_2 = \beta_{2,\infty}$).
- o La corrélation pour μ n'est valable qu'à $Q_{V,a}$.
- o On observe que le travail massique sur la roue $(w_m = U_2C_{\theta_1,2})$ en fonction de Q_V est en première approximation parallèle à la droite (c.f. éq. 2 planche 17) $w_{m,\infty} = f(Q_V)$.

Etude du fonctionnement de la roue d'une pompe centrifuge.
Situation réelle : modèles de pertes, rendements



 \mathbf{H}_{th}

- 1. Pertes hydrauliques
- 2. Pertes mécaniques
- 3. Pertes volumétriques

Ricardo NOGUERA 35

- 1. Pertes hydrauliques:
 - ✓ Changement de direction
 - Changement de section
 - Frottement
 - Désadaptation

Changement de direction: $\Delta h_d = K_d qv^2$

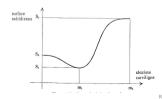
- Direction axiale à direction radiale: Elipse
- De β_{10} à $\beta_{2\infty}$: Forme et longueur des pales

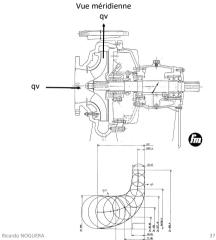
Ricardo NOGUERA

Vue méridienne

- 1. Pertes hydrauliques:
 - ✓ Changement de direction
 - ✓ Changement de section
 - ✓ Frottement
 - ✓ Désadaptation

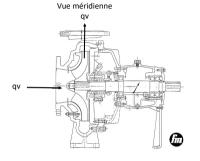
Changement de section: $\Delta h_s = K_s qv^2$





- 1. Pertes hydrauliques:
 - ✓ Changement de direction
 - ✓ Changement de section
 - Frottement
 - ✓ Désadaptation

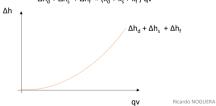
Frottement: $\Delta h_f = k_f' C^2 = k_f qv^2$

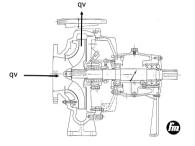


Ricardo NOGUERA

- 1. Pertes hydrauliques:
 - ✓ Changement de direction
 - ✓ Changement de section
 - Frottement
 - ✓ Désadaptation

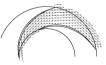
$$\Delta h_d + \Delta h_s + \Delta h_f = (k_d + k_s + k_f) qv^2$$





Vue méridienne

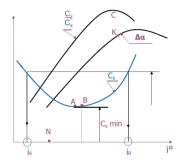
Vue de face



- 1. Pertes hydrauliques:
 - ✓ Changement de direction
 - ✓ Changement de section
 - ✓ Frottement
 - ✓ Désadaptation

Désadaptation: $\Delta h_{adap} = K_{adap} (qv - qva)^2$ $\Delta h \qquad \qquad \Delta h_{adap} \qquad \Delta h_{adap}$ $qva \qquad qv \qquad \text{RI}$

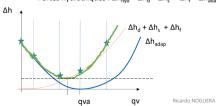
Ricardo NOGUERA



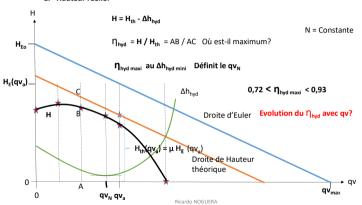
1. Pertes hydrauliques:

- ✓ Changement de direction
- ✓ Changement de section
- ✓ Frottement
- ✓ Désadaptation

Pertes hydrauliques : $\Delta h_{hvd} = \Delta h_d + \Delta h_s + \Delta h_f + \Delta h_{adap}$



1. Hauteur réelle:



- 2. Pertes mécaniques:
 - ✓ Pertes sur les paliers (roulements, coussinets, ...)
 - ✓ Parties non actives: extérieur des flasques (frottement de disque: rugosité de surface, v)
 - ✓ Pertes dans le système d'étanchéité (presse-étoupe, garniture d'étanchéité, ...)

Tout ça consomme de l'énergie fournie sur l'arbre de la roue ($\mathfrak{F}_{méca}$) qui ne dépend pas du point de fonctionnement, mais de la vitesse de rotation et elle varie avec N^2 .

🏂 méca : Constante pour N donnée.

𝓕_{abs}: Puissance fournie sur l'arbre (varie avec N³)

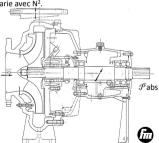
 $\mathcal{F}_{\text{roue}}$: Puissance fournie à la roue

$$\eta_{\text{méca}} = \mathcal{F}_{\text{roue}} / \mathcal{F}_{\text{abs}} = (\mathcal{F}_{\text{abs}} - \mathcal{F}_{\text{méca}}) / \mathcal{F}_{\text{abs}} = (N^3 - N^2) / N^3$$

 $0,90 < \eta_{méca} < 0,97$

Evolution du $\eta_{méca}$ avec N ?

Ricardo NOGUERA



- 3. Pertes volumétriques:
 - ✓ Dues aux fuites internes.
 - ✓ Jeux de fonctionnement
 - ✓ Système d'équilibrage de la poussé axiale (trous d'équilibrage) **qv** p₂

qv : Débit pompé

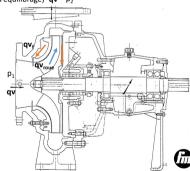
qv_{roue} : Débit qui traverse la roue

qv_f : Débit de fuite

$$\eta_{\text{vol}} = qv / qv_{\text{roue}} = qv / (qv + qv_f)$$

 $0.85 < \eta_{vol} < 0.98$

Evolution du η_{vol} avec qv?



Ricardo NOGUERA

1. Hauteur réelle:

