Centrales nucléaires de production d'électricité. 2- Technologie des REP

Master IPE

Florent Ravelet1

Laboratoire d'Ingénierie des Fluides et des Systèmes Énergétiques

¹Arts et Métiers - Sciences et Technologies

18 octobre 2023

Rappels sur la notion de filière

Figure - Historique des générations de centrales nucléaires

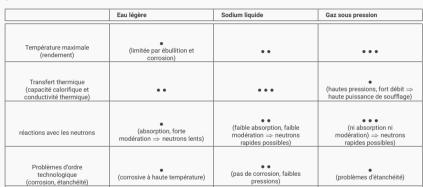
- Filière : combinaison Combustible / Modérateur / Caloporteur
- Neutrons libérés lors d'une fission : neutrons rapides ($E \simeq 2 \text{ MeV}$)
- Sections efficaces (probabilités de réaction) décroissent avec l'énergie des neutrons ⇒ Deux voies
 - o Neutrons rapides et uranium fortement enrichi
 - o Neutrons thermiques et uranium peu (ou pas) enrichi

- Neutrons issus de fission : $E \simeq 1$ MeV, i.e. $v \simeq 13800$ km.s⁻¹
- Neutrons en équilibre thermique à 300°C : $k_BT \simeq 0.05$ eV , i.e. $v \simeq 3.1$ km.s⁻¹
- Ralentissement par « chocs » successifs :

		1			
Noyau	Perte relative énergie / choc	Nbre chocs nécessaires			
Hydrogène	0.636	19			
Deutérium	0.710	26			
Carbone	0.925	112			
Béryllium	0.903	86			
Oxygène	0.942	147			
Zirconium	0.989	804			
Uranium	0.996	2 086			

Modérateur	Ralentissement	Capture	Coût	U naturel?
Eau (H ₂ 0)	+++	+	+++	Non
Eau lourde (D ₂ 0)	+++	+++	_1	ОК
Graphite (C)	+	++	+	ок

Dans un réacteur à eau, durée de ralentissement $\simeq 4 \times 10^{-5}$ s << temps effectif de régénération des neutrons.



^{1.} en faible quantité dans l'eau, obtenue par distillation, hydrolyse ou procédé chimique, 340 000 tonnes d'eau pour une tonne d'eau lourde

Transparence

Sûreté

(opaque)

(très réactif avec l'air, l'eau, le

ciment...)

. . .

(Risque de vaporisation)

. . .

(Risque de depressurisation)

Enrichissement de l'Uranium

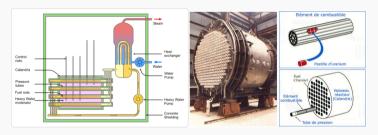
 $Uranium\ naturel: 99.3\%\ d_{92}^{\prime 238}U\ et\ 0.7\%\ d_{92}^{\prime 235}U\ en\ masse.\ Enrichissement: augmentation\ de\ la\ teneur\ en_{92}^{\prime 235}U\ en_{92}^$

- Uranium légèrement enrichi (SEU) : 2%;
- Uranium faiblement enrichi (LEU): 3% à 5%;
- Uranium hautement enrichi (HEU): 20%, pour la propulsion navale;
- Uranium de qualité militaire : plus de 90%.

Procédés :

- Diffusion gazeuse. Première méthode déployée à échelle industrielle, énergivore, tend à disparaître;
- Centrifugation, Réclame 50 fois moins d'énergie.

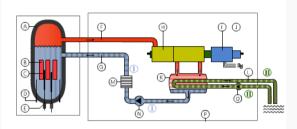
Pays	Production (MUTS/ans) 2013	2015	Prévision 2020		
France	5.5	7	7.5		
Germany-Netherlands-UK	14.2	14.4	14.9		
USA	3.5	4.7	4.7		
Russia	26	26.6	28.7		
China	2.2	5.8	10.7		
Total	51.6	58.6	66.7		
Besoins (WNA reference scenario)	49.1	47.2	57.4		


Principales filières

Filières	Combustible	Modérateur	Caloporteur	En marche (2022)		Construction (2022)		Arrêtés (1950-2022)	
				GWe	#	GWe	#	GWe	#
UNGG, Magnox	Uranium naturel	Graphite	Gaz carbo- nique	0	0	0	0	7.2	37
HWGCR	Uranium naturel	Eau lourde	Gaz carbo- nique	0	0	0	0	0.2	5
CANDU	Uranium naturel	Eau lourde	Eau lourde	24.5	47	1.9	3	2.7	10
RBMK	Uranium enrichi (1.8%)	Graphite	Eau bouillante	7.4	11	0	0	8.9	13
AGR	Uranium enrichi (3%)	Graphite	Gaz carbo- nique	4.6	8	0	0	3.0	7
BWR	Uranium enrichi (3%)	Eau	Eau bouillante	61.8	61	2.6	2	30.6	52
PWR	Uranium enrichi (3%)	Eau	Eau liquide	293.7	307	54.2	50	43	65
FBR	Uranium/Plutonium ≥ 10%		Sodium liquide ou Plomb	1.4	2	1.9	4	1.9	8
Total				393.6	437	60.8	59	99.0	204

CANDU

Canada, Inde, Roumanie.


- Eau lourde : modérateur et Eau lourde sous pression dans tubes de force : caloporteur;
- Rechargement en marche possible.

Réacteurs à eau bouillante

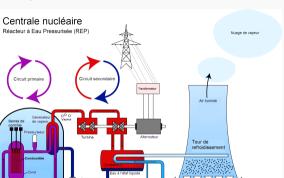

USA, Japon, Suède, Allemagne.

Schéma de fonctionnement d'un réacteur à eau bouillante

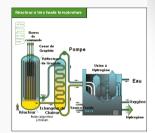
- Eau ordinaire : caloporteur et modérateur;
- Pression 80 bars, ébullition dans le cœur;
- Détente directe. Meilleur rendement.

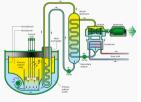
Réacteurs à eau sous pression

• Eau ordinaire : caloporteur et modérateur;

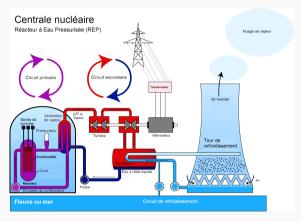
Fleuve ou mer

- Maintenue liquide à 155 bars;
- Générateur de vapeur, circuit secondaire.

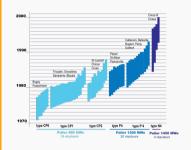


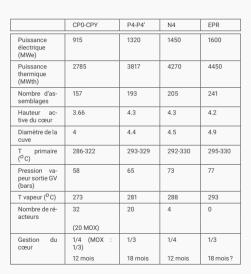

Forum international, 12 pays. 6 concepts retenus :

- Réacteur nucléaire à très haute température,
- Réacteur à eau supercritique,
- Réacteur nucléaire à sels fondus,
- Réacteur à neutrons rapides à caloporteur gaz,
- Réacteur à neutrons rapides à caloporteur sodium,
- Réacteur à neutrons rapides à caloporteur plomb.

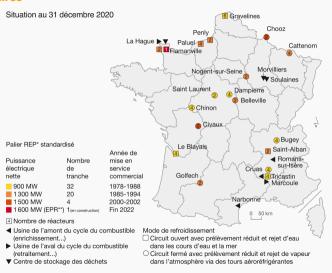


Présentation détaillée des réacteurs à eau sous pression

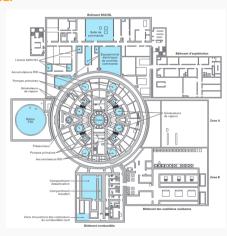

Réacteur à eau sous pression

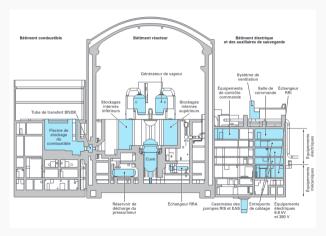


- Eau ordinaire, cycle indirect. Combustible UO₂ enrichi de 3% à 5% en $_{99}^{235}U$.
- Circuit primaire pressurisé à 155 bars.
- Circuit secondaire fermé, cycle de Hirn-Rankine.

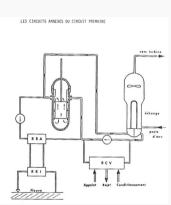

Capacité installée en France

Sites nucléaires





Plan de masse réacteur



Circuit primaire (palier 900 MWe)

- Trois boucles dans un REP de 900 MWe:
- Rôle: produire les 2785 MW_{th}, les transférer au circuit secondaire;
- P = 155 bars, $T_f = 286$ °C, $T_c = 322$ °C;

RRI : source froide du RRA.;

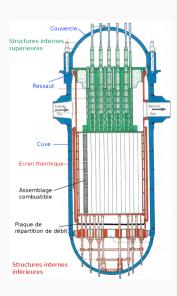
• RCV : contrôle volumétrique et chimique.

Réacteur

Cuve et couvercle (données 900 MWe) :

- $\circ \Phi = 4 \, \text{m}$
- ∘ H = 12.3 m
- ∘ e = 200 mm
- 50 passages d'instrumentation
- o masse: 263 + 54 tonnes

Structures internes inférieures :

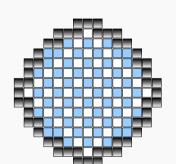

- alignement, canalisation fluide, protection cuve
- o masse : 110 tonnes
- o écran thermique e = 68 mm

Structures internes supérieures :

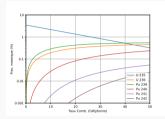
- Positionnement grappes de commande
- o masse: 30 tonnes

Combustible :

- o 157 assemblages
- H = 3.66 m
- o masse UO2: 80 tonnes

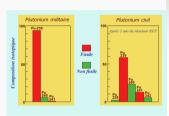


Combustible



Enrichi 3,1% Enrichi 2,6% Enrichi 2,1%

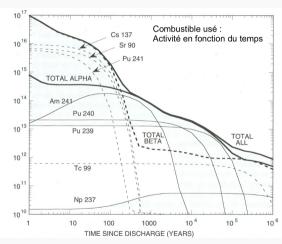
Combustible usé



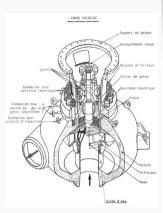
Après 3 ans (33 GWj / tonne), il reste par tonne :

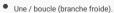
- 955 kg d'Uranium (dont 940 kg ²³⁸U et 10 kg ²³⁵U);
- 10 kg Plutonium (6 kg ²³⁹Pu, 1 kg ²⁴¹Pu);
- 34 kg de produits de fission hautement radioactifs;
- 0.7 kg d'actinides mineurs de longue durée de vie.

Retraitement? Recyclage? Déchets? Accumulation de *Pu*?



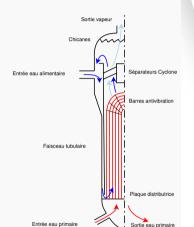
Chaîne de l'uranium : formation d'actinides





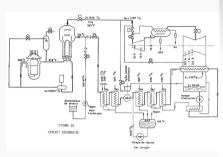
Pressuriseur & Pompe primaire

- Rôle : maintenir une pression de 155 bars.
- Situé sur une branche chaude.
- En jouant sur équilibre liquide / vapeur ($T_{sat} = 345^{\circ}$ C).
- Cannes chauffantes (1400 kW max, 100 kW en marche) et aspersion.
- Contrôle du niveau.


- Hélico-centrifuge mono-étage.
- $Q_V = 20100 \text{ m}^3/\text{h}, H_e = 84.5 \text{ m.c.e}, N = 1485 \text{ rpm}, P = 5 \text{ MW}.$

Générateur de vapeur

- Rôle : vaporiser eau du secondaire.
- Vaporisateur tubulaire à circulation naturelle, disposé verticalement
- Eau primaire : 3388 tubes (20 m, $\Phi=22$ mm, e=1 mm) en U immergés.
- Un / boucle. Puissance: 890 MW.
- Surface d'échange 4800 m².
- Séparateurs cyclones et recirculation, titre vapeur en sortie 0.998.
- 491 kg.s $^{-1}$, 55 bars ($T_{sat} = 268^{\circ}$ C).



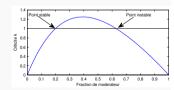
Circuit secondaire

- Particularité : pas de surchauffe initiale.
- Détente HP (un corps à 7 étages double flux), 55 bars à 11 bars, titre en eau : 12%.
- Séparateur-surchauffeur.
- Détente BP 11 bars à 43 mbars (trois corps à 7 étages double flux).

Contrôle-commande, régulation

Instrumentation : Flux neutronique, Températures, Pressions, Débits.

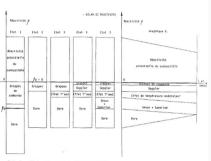
Régulations :


o Température moyenne réacteur.

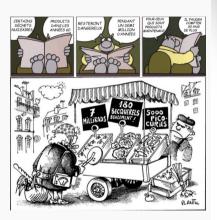
Pression primaire.

Niveau pressuriseur.

Réactivité et stabilité


- Criticité k: proportion des neutrons issus de fission donnant une fission. k = 1 ⇒ flux neutronique et puissance constants (réacteur critique).
- Réactivité $\rho = \frac{k-1}{k}$.
- Coefficient de réactivité $\frac{\partial \rho}{\partial T}$.

Exploitation



- Etat 1 : Adacteur à l'arrêt à froid, après un rechargement.
 - La réactivité potentielle importante du combustible est compensée très largement par l'antiréactivité introduite par les grappes de commande et le bore (forte concentration). La réactivité albable du comer " fo" sur lairs très népositie.
- Etat ? | Mecteur à l'état critique à froid. Puissance multe. La réactivité potentielle du cour est compensée par le bore et les grappes partiellement extraites du comer pour obtent fig = 0.
- East 3 : Réacteur à l'état critique à cheud, Puissance mulle,
- L'effet de température du modérateur apparaît : il est compensé par dilution de bore.
- Etat 4 : Récteur à l'état critique à chaud. Puissance moninale. L'effet Doppler introduit de l'antiréactivité compensée par extraction des grappes jusque dans leur "tonce de séfénace".
- Etat 5 : Le Méacteur fonctionne à puissance nominale depuis quelques jours.
- Il apparaît les effets Xénon et Samerium qui apportent une antirésctivité compensée par le bore.
- Graphique 6 : Il traduit l'évolution dens le temps du bilan de réactivité de l'état 5 jusqu'au déchargement (fin de cocle). L'usure du combustible est alors commencée par une dilution de bore.

