Introduction	Geometrical features 0000	Coordinate system and reference frames	Characteristics	Internal flow features

Turbomachinery & Turbulence. Lecture 1: Introduction to turbomachinery.

F. Ravelet

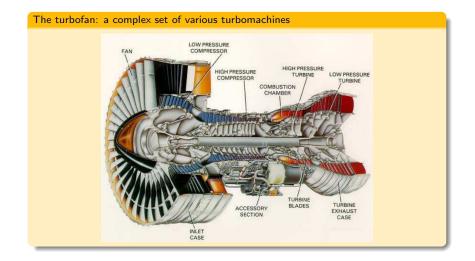
Laboratoire DynFluid, Arts et Metiers-ParisTech

February 2, 2016

Introduct	ion Geometrical features 0000	Coordinate system and reference frames	Characteristics	Internal flow features 000000
	General introduction			
		rotating machine which achieves d a moving fluid. The transfer ca		
		increase of the fluid pressure or hea ted fans, compressors and pumps;	d:	

- producing power ⇒ expansion of the fluid to a lower pressure or head: wind, hydraulic, steam and gas turbines.
- It consists of one or more
 - moving blade rows: rotors, impellers, propellers;
 - stationary parts: stators, nozzles, volutes.
- Changes of flow direction through moving surface \Rightarrow angular momentum and energy exchange \Rightarrow Variation of stagnation enthalpy.
- Several geometries according to flow direction: Axial, Centrifugal (radial) and Mixed-flow.
- 3D, unsteady, turbulent and rotating internal flows.
- Compressible and incompressible flows.

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000


Functions and industrial domains

- Recovery of the energy of a fluid
 - liquid: Hydraulic potential energy recovery (dams)
 - gas: Production of mechanical energy (dental turbine, turbocharger, turbopumps)
- Gas compression
 - compressed air network
 - · automotive internal combustion engine
- Fluid transportation
 - pumps to overcome gravity (elevation of a liquid)
 - to overcome head losses in a pipe
- Energy production from heat source (gas and steam turbines in a thermodynamic cycle)
- Production of thrust in aeronautics (turboreactors and turbofans)

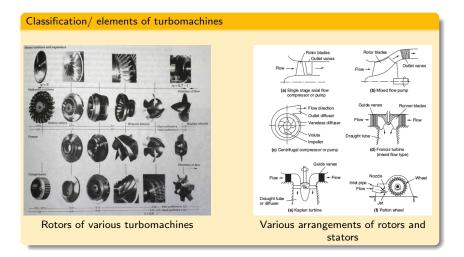
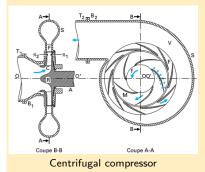
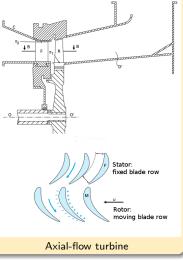


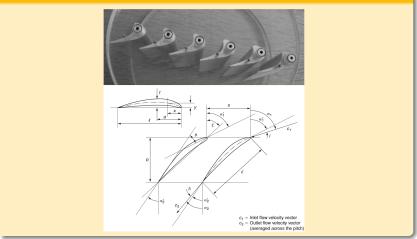
Figure : Windmills, turboreactor.

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Examples				




Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Overview				

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Overview				


Description of two typical single-stage turbomachines

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Overview				

Blade Cascade

ro			

Geometrical features

Coordinate system and reference frames

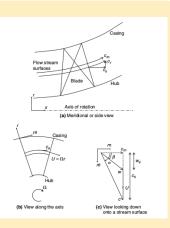
Characteristic

Internal flow features

- Natural coordinate system: cylindrical r, θ, x .
- Absolute velocity is \vec{C} . Meridional velocity:

$$C_m = \sqrt{C_r^2 + C_x^2}$$

• Swirl angle:


$$\alpha = \arctan\left(\frac{C_{\theta}}{C_m}\right)$$

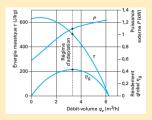
 Relative frame of reference rotating with U = rω. If the relative velocity is *W*:

$$\vec{C} = \vec{U} + \vec{W}$$

• Relative flow angle:

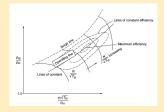
$$\begin{split} \beta &= \arctan\left(\frac{W_\theta}{W_m}\right) = \arctan\left(\frac{W_\theta}{C_m}\right) \\ &\tan\beta = \tan\alpha - \frac{U}{C_m} \end{split}$$

Geometrical features


Characteristics

Internal flow features

Characteristics of incompressible and compressible flow turbomachines


First law of thermodynamics for open systems:

$$\dot{m}\Delta h_0 = \dot{Q} + \dot{W}$$

Incompressible flow:

- Mechanical energy rise τ vs. volumetric flow-rate q_v
- Shaft power P
- Efficiency $\eta = \frac{\rho q_V \tau}{P}$ (pump)

Compressible flow:

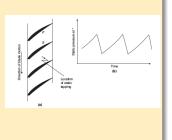
- Mechanical energy rise vs. mass flow-rate \dot{m}
- Speed of sound a_{01} (Mach number) \Rightarrow
- Total pressure ratio π_t vs. flow capacity for a given Mach number
- Surge limit and choked flow limit.

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			00000
Unsteadiness				

Unsteadiness and non-axisymmetry: a key to work transfer

Work transfer in turbomachinery: the underlying mechanism is fundamentally unsteady:

$$\frac{dh_0}{dt} = \frac{1}{\rho} \frac{\partial p}{\partial t}$$

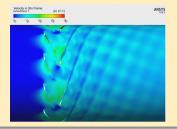

A pressure field moves with the blades (\approx steady in the relative frame of reference). At a fixed position in space:

$$\frac{\partial p}{\partial t} = \omega \frac{\partial p}{\partial \theta}$$

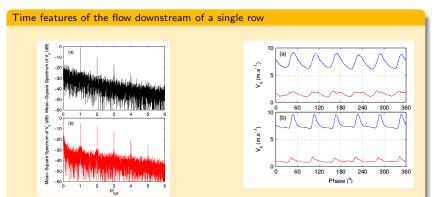
Different time scales

Unsteady phenomena of two kinds:

- Not periodic phenomena: transient start, turbulent fluctuations, ...
- Periodic phenomena:
 - correlated with the blade row rotation rate ω : rotor/stator and rotor/rotor interactions
 - $\bullet\,$ uncorrelated to the blade row rotation rate: system instabilities, trailing edge vortex releases, \ldots

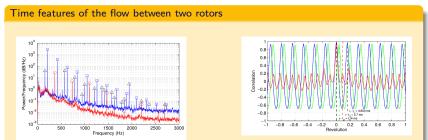

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
Unsteadiness				

Rotor/stator interaction


-In a stage, one blade row is downstream of the other (!)

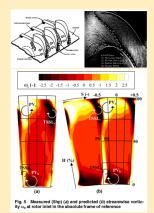
-For a blade row rotation rate ω , with Z the number of blades, I the chord length and C_m the meridional velocity:

- Blade passing time scale: $t_{bpf} = \frac{2\pi}{Z\omega}$
- Convective time scale: $t_c = \frac{l}{C_m}$
- Reduced frequency: $f = \frac{t_c}{t_{bpf}} = \frac{Z\omega I}{2\pi C_m}$
 - $f \ll 1$: convective phenomena are dominant \Rightarrow quasi-steady flow.
 - $f \gg 1$: periodical perturbations are dominant \Rightarrow unsteady flow.



LDA measurement of the velocity downstream of axial-flow fans (single rotor).

- On the left: power spectrum.
- On the right: phase-averaged velocity (blue) and phase-averaged rms of the velocity (red).
- (a) and (b) are two different fans.


Casing pressure fluctuations between two counter-rotating axial-flow fans.

- On the left: power spectrum.
- On the right: Autocorrelation function and cross-correlation function (green) between two microphones separated by 90°.
- red and blue are two different distances between the rotors.

Small-scale turbulence is a second-order effect, confined into casing/blades boundary layers and wakes.

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Three-dimensional t	flow			

Viscous effects

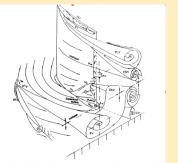
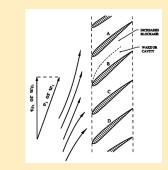
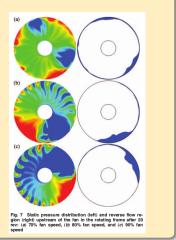



Figure I. Schematic of secondary flow structure in a compressor cascade with tip clearance, Kang [6]: PV – Passage vertex; HV – Horseshee vortex; TLV – Tip leakage vortex; TSV – Tip secondary vortex; SV – Secondary vortex; CSV – Concentrated shed vortex; CC – Corner vortex


Cross-stream pressure gradients + boundary layers \Rightarrow Secondary flows (recirculations). Streamwise adverse pressure gradient \Rightarrow Diffusion \Rightarrow Stall, flow separation and backflow, leading to large scale instabilities.

Introduction	Geometrical features	Coordinate system and reference frames	Characteristics	Internal flow features
	0000			000000
Instabilities				

Stall, Stage stall and surge

Rotating stall: frequency of the order of the rotating frequency. Surge: system instability, slow time scales.

