Global balance	equations	in open	systems
0000			

Nechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Turbomachinery & Turbulence. Lecture 2: One dimensional thermodynamics.

F. Ravelet

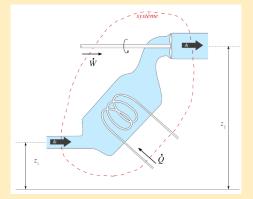
Laboratoire DynFluid, Arts et Metiers-ParisTech

February 3, 2016

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
●000	000	00000000000	00
Control volume			

Global balance equations in open systems

Fixed control volume



- Mass balance
- Momentum balance
- Total Energy balance

Global balance equations in open systems •••• Enthalpy Mechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Flow work, shaft work and enthalpy

• To push a volume V_{in} of fluid inside the control volume each second, the exterior gives to the system:

$$\dot{W}_{in} = p_{in}\dot{V}_{in} = rac{p_{in}}{\rho_{in}}\dot{m}_{in}$$

That is a specific work

$$w_{in} = \frac{p_{in}}{\rho_{in}}$$

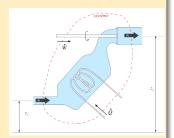
• To extract the fluid of the control volume, the system restitutes a specific work to the exterior:

$$w_{out} = -\frac{p_{out}}{\rho_{out}}$$

• The "specific flow work" $\frac{p}{\rho}$ is included into the specific enthalpy $h = \tilde{u} + \frac{p}{\rho}$

• For an open-system, under steady conditions:

$$\dot{W} + \dot{Q} = \dot{m}\Delta\left(h + \frac{C^2}{2} + gz\right)$$



Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	0000000000	00
Basic relations			

Global balance equations in open systems

• Mass balance

$$rac{\partial(
ho V)}{\partial t} = \dot{m}_{in} - \dot{m}_{out}$$

• Momentum balance

$$\iiint_{V} \frac{\partial \left(\rho \vec{C}\right)}{\partial t} dv + \oint_{S} \rho \vec{C} \left(\vec{C} \cdot \vec{n}\right) ds = \iiint_{V} \rho \vec{f} dv + \oint_{S} \overline{\tau} \cdot \vec{n} ds$$

• Energy balance

$$\iiint_{V} \frac{\partial}{\partial t} \left[\rho \left(\frac{C^{2}}{2} + gz + \tilde{u} \right) \right] dv + \oiint_{S} \rho \left[\frac{C^{2}}{2} + gz + \tilde{u} + \frac{p}{\rho} \right] \left(\vec{C} \cdot \vec{n} \right) ds = \dot{W} + \dot{Q}$$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
000●	000	00000000000	00
Practice			

Exercice 1

- The compressor of a turboreactor takes $\dot{m} = 1.5 \text{ kg.s}^{-1}$ of air at 0.8 bar with an internal energy $\tilde{u} = 192.5 \text{ kJ.kg}^{-1}$ and a specific volume of 0.96 m³.kg⁻¹.
- The air is compressed at 30 bar and has then an internal energy $\tilde{u} = 542.3 \text{ kJ.kg}^{-1}$ and a specific volume of $6.19 \times 10^{-2} \text{ m}^3 \text{.kg}^{-1}$.
- There is no change in velocity and no heat transfer.
- What is the power of the compressor?

Exercice 2

- In a nozzle, air is expanded without work or heat transfer.
- The air enters with a specific enthalpy $h = 776 \text{ kJ.kg}^{-1}$ and a speed of 30 km/h.
- It leaves the nozzle with a specific enthalpy $h = 636 \text{ kJ.kg}^{-1}$.
- What is the outlet speed?

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	●00	0000000000	00
Mechanical energy			

Mechanical energy and efficiency

- Turbomachines are used to vehiculate fluids, to compress them, or to recover energy.
- They imply generation or consumption of mechanical energy.
- Mechanical energy: form of energy that can be converted to work completely and directly by an ideal machine.
- Specific mechanical energy of a fluid:

$$e_{mech}=rac{p}{
ho}+rac{C^2}{2}+gz$$

- flow energy + kinetic energy + potential energy
- it looks like the right-hand side of

$$\dot{W} + \dot{Q} = \dot{m}\Delta\left(h + \frac{C^2}{2} + gz\right)$$

doesn't it?

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	00000000000	00
Efficiency			

Mechanical energy and efficiency

- Turbomachines are often operating adiabatically:
- If no "irreversible losses" are present:

$$\dot{W} = \dot{m}\Delta\left(e_{mech}
ight)$$

- "losses" are actually a degradation of *mechanical* energy into *thermal/internal* energy, *i.e.* **losses of mechanical energy**
- The mechanical efficiency of a process is:

$$\eta_{mech} = \frac{Mech. Energy Output}{Mech. Energy Input} = 1 - \frac{E_{mech. loss}}{E_{mech. in}}$$
For a compression: $\eta = \frac{\Delta \dot{E}_{mech, fluid}}{W_{shaft}}$
For an expansion: $\eta = \frac{\dot{W}_{shaft}}{\Delta \dot{E}_{mech, fluid}}$

Global balance	equations	in	open	systems	
0000					
Practice					

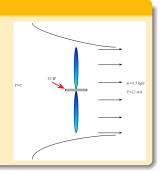
Mechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Exercice 1

- A fan absorbs 50 W to impulse 0.5 kg.s⁻¹ of air from rest to $V = 12 \text{ m.s}^{-1}$
- What is its efficiency?



Exercice 2

- The water in a lake is to be used to generate electricity.
- $\bullet\,$ The elevation difference between the free surfaces upstream and downstream of the dam is 50 m.
- Water is to be supplied at a rate of 5000 kg.s⁻¹.
- The turbine has an efficiency of 80%.
- What is the power available on the shaft?

Global	balance	equations	in	open	systems	
0000)					
Gibbs	equation					

Aechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Gibbs equation

- Entropy s: in thermodynamics, a measure of the number of specific ways in which a thermodynamic system may be arranged.
- A state function: the change in the entropy is the same for any process that goes from a given initial state to a given final state (reversible or irreversible).
- For a reversible process:

$$ds = rac{\delta q_{rev}}{T}$$

• First principle:

$$d\tilde{u} = \delta w + \delta q$$

• The internal energy \tilde{u} is also a state function. For a reversible process:

$$\delta w_{rev} = -pd\left(rac{1}{
ho}
ight)$$

Thus:

$$d ilde{u} = -pd\left(rac{1}{
ho}
ight) + Tds$$

 $dh = rac{dp}{
ho} + Tds$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000000000000000000000000000000000000	00
State laws			

Equation of state for a perfect gas

- $p = \rho r T$ ($r = 287 \text{ J.kg}^{-1}$.K⁻¹ for air).
- $\tilde{u} = c_v T$
- $h = c_p T$
- $r = c_p c_v$
- $\gamma = \frac{c_p}{c_v}$ ($\gamma = 1.4$ for a diatomic gas).
- Show that $p = \rho (\gamma 1) \tilde{u}$, compute c_p and c_v for air.

Isentropic transformations

- $p\rho^{-\gamma} = \text{cte}$
- $T\rho^{1-\gamma} = \text{cte}$
- $p^{\gamma-1}T^{-\gamma} = \text{cte}$
- Celerity of sound waves: $a^2 = \left(\frac{\partial p}{\partial \rho}\right)_s$. For a perfect gas: $a = \sqrt{\gamma r T}$.

• $\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma}$

• $\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	0000000000	00
State laws			

Exercice 1

- A liquid pump rises the pressure of water from 1 to 20 bars.
- The mass-flow rate is 2 kg.s⁻¹.
- The specific volume is constant and is $v_L = 10^{-3} \text{ m}^3 \text{ kg}^{-1}$.
- What is the power needed for an isentropic process?
- What is the temperature rise for an efficiency of 80%? ($c = 4.18 \text{ kJ.kg}^{-1}$.K⁻¹).

Exercice 2

- A compressor rises the pressure of air from 1 to 20 bars.
- The mass-flow rate is 2 kg.s⁻¹.
- The process is isentropic: $p(1/\rho)^{1.35} = \text{cte.}$ At the inlet the specific volume is $v_a = 0.8 \text{ m}^3.\text{kg}^{-1}$.
- What is the power needed?
- What is the increase in temperature?

Global balance	equations	in	open	systems	
0000					
Stagnation var	iables				

Nechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

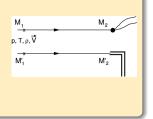
Stagnation enthalpy and temperature

• Stagnation (or total) enthalpy: fluid brought to rest with no heat or work transfer

$$h_0=h+\frac{C^2}{2}$$

• For a perfect gas with $h = c_p T$, with constant c_p , one defines:

$$T_0 = T + \frac{C^2}{2c_p}$$



Isentropic stagnation pressure and density

• For a (fictious) isentropic transformation of a perfect gas:

$$\frac{p_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{\gamma}{\gamma-1}} \quad \Rightarrow \quad p_0 = \rho \left(1 + \frac{C^2}{2c_p T}\right)^{\frac{\gamma}{\gamma-1}}$$
$$\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{1}{\gamma-1}} \quad \Rightarrow \quad \rho_0 = \rho \left(1 + \frac{C^2}{2c_p T}\right)^{\frac{1}{\gamma-1}}$$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	0000000000	00
Stagnation variables			

Isentropic stagnation pressure and density

• For a perfect gas:

$$\frac{C^2}{2c_p T} = \frac{\gamma r T}{2c_p T} M^2 = \frac{\gamma - 1}{2} M^2$$

• For a (fictious) isentropic transformation of a perfect gas:

$$T_0 = T\left(1 + \frac{\gamma - 1}{2}M^2\right)$$
$$p_0 = \rho\left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$
$$\rho_0 = \rho\left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	0000000000	00
Stagnation variables			

Incompressible flow

- For M = 0.3, what is the relative variation of density?
- The flow is incompressible $M \le 0.3$
- What becomes the relation between stagnation and static pressure in that case ?

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000000000	00
Application to turbomachinery			

Application to turbomachinery

• For an adiabatic situation:

$$dW_{shaft} = Tds + rac{dp}{
ho} + drac{C^2}{2}$$

$$dW_{shaft} = T_0 ds_0 + \frac{dp_0}{\rho_0}$$

- $T_0 ds_0$ are dissipation of mechanical energy (losses).
- For a perfect gas:

$$\begin{aligned} \mathcal{N}_{shaft} &= c_{p} \left(T_{02} - T_{01} \right) \\ &= c_{p} T_{01} \left(\frac{T_{02}}{T_{01}} - 1 \right) \end{aligned}$$

• In case of an isentropic transformation:

$$W_{shaft} = c_{p} T_{01} \left(\left(\frac{p_{02}}{p_{01}} \right)^{\frac{\gamma-1}{\gamma}} - 1 \right)$$

Glo	bal	bala	ance	eq	uations	in	open	systems	
00	000)							

Nechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Application to turbomachinery

Thermodynamic diagrams

- Entropic T, s and Enthalpic h, s diagrams.
- For an adiabatic evolution in an open system:
 - Ordinates stand for the energy in enthalpic diagram.
 - Abscissa stand for the degree of irreversibility.
 - Losses are best shown in entropic diagram $(\int_{i}^{f} Tds)$.
- Isentropic evolutions are vertical path.
- In real cases, the entropy rises (2^{nd} principle).
- ⇒ Definition of efficiencies.

Efficiency

- Efficiency of a turbomachine is one of the most important performance parameters, but also one of the most ill-defined.
- Idea: to compare the actual work transfer to that which would occur in an ideal process.
- The ideal process: reversible between the same end states.
- But what are the "relevant" end states?
- And what is the reversible reference transformation?
 - $\bullet\,$ Incompressible flow $\Rightarrow\,$ straightforward definition based on the fluid mechanical energy variation.
 - Compressible flow $\Rightarrow \int_{i}^{f} \frac{dp}{\rho}$ is path-dependent.

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000000000	00
Application to turbomachinery			

Polytropic transformation

• For an infinitesimal transform between two defined end states:

$$\delta w - \delta w_{rev} = \delta f > 0$$

- Polytropic evolution: the reversible evolution the fluid would experience following the same path as the actual transformation.
- Actual energy transfer W_{shaft}.
- Polytropic work $\tau_p = \int_i^f \frac{dp}{\rho} + \Delta\left(\frac{C^2}{2}\right)$.
- Internal losses:

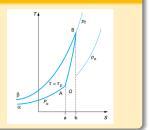
$$\Delta f = W_{shaft} - \tau_p$$

Polytropic coefficient

• The real path $\rho(p)$ is modeled: $p\rho^{-k} = \text{cte}$

$$\rho^{-k} = \text{cte}$$

 $k = \frac{\ln\left(\frac{p_f}{p_i}\right)}{\ln\left(\frac{\rho_f}{\rho_i}\right)}$



Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000000000	00
Application to turbomachinery			

Polytropic efficiency for an ideal gas

$$\frac{k-1}{k} = \frac{\ln\left(\frac{T_{0,f}}{T_{0,i}}\right)}{\ln\left(\frac{P_{0,f}}{P_{0,i}}\right)}$$
$$\tau_{P} = \frac{k}{k-1}r\left(T_{0,f} - T_{0,i}\right)$$
$$\eta_{P} = \frac{\frac{k}{k-1}}{\frac{\gamma}{\gamma-1}}$$

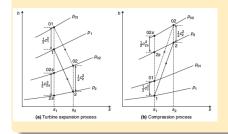
Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000000000	00
Application to turbomachinery			

Isentropic transformation

A reversible adiabatic transform between the same end states. But which ones ?

- **0** Between the same static pressures and velocities \Rightarrow *isentropic* efficiency η_{is} .
- **2** Between the same total (stagnation) pressures \Rightarrow *total to total* efficiency η_{tt} .
- **6** A mix \Rightarrow *total to static* efficiency η_{ts} .

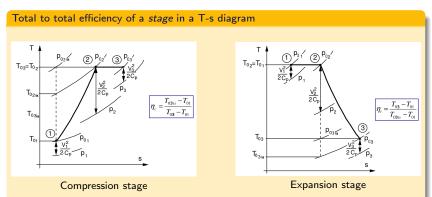
Visualisation of efficiencies in a h-s diagram



The state 02s is not an actual state! For an expansion process (steam and gas turbines):

- 2 exhaust kinetic energy wasted: $\eta_{ts} = \frac{h_{02} - h_{01}}{h_{2s} - h_{01}}$
- (a) exhaust kinetic energy usefull: $\eta_{tt} = \frac{h_{02} h_{01}}{h_{02s} h_{01}}$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	000000 0000	00
Application to turbomachinery			



- Compressible flow of an ideal gas: actual work measured with total temperature change.
- For a stator, $\Delta h_0 = 0 \Rightarrow \eta_{tt}$ of a stator has no meaning!
- Compression: the dissipation is linked to $p_{02,s} p_{02}$ for the rotor and to $p_{03} p_{02}$ for the stator.

Global balance equations in open systems 0000 Local form of the energy balance lechanical energy and efficiency

Entropy and thermodynamics diagrams

Dissipation in flow

Energy balance for a fluid particle

The time derivative of the kinetic energy and of the internal energy of a *fluid particle* is equal to the sum of the external forces power and the heat power:

$$\frac{d}{dt}\left(E_{k}+E_{int}\right)=\mathcal{P}_{ext}+\mathcal{P}_{cal}$$

$$E_{k} = \iiint_{V} \frac{1}{2} \rho C^{2} \qquad \mathcal{P}_{ext} = \iiint_{V} \rho \vec{g} \cdot \vec{C} + \oiint_{S} (\overline{\sigma} \cdot \vec{n}) \cdot \vec{C}$$

$$E_{i} = \iiint_{V} \rho \vec{u} \qquad \mathcal{P}_{cal} = \iiint_{V} \rho r_{e} + \oiint_{S} \lambda \vec{\nabla} T \cdot \vec{n}$$

Local energy balance equation

$$\frac{d}{dt}\left(\rho\left(\tilde{u}+\frac{1}{2}\rho C^{2}\right)\right)+\rho\left(\tilde{u}+\frac{1}{2}\rho C^{2}\right)\operatorname{div}\vec{C}=\rho\vec{g}\cdot\vec{C}+\rho r_{e}+\operatorname{div}\left(\lambda\vec{\nabla}T\right)+\operatorname{div}\left(\overline{\overline{\sigma}}\cdot\vec{C}\right)$$

Momentum balance equation $(\cdot \vec{C})$ + mass balance equation \Rightarrow Kinetic energy balance equation. By substraction:

$$\frac{\partial}{\partial t}\tilde{u} + \vec{C}\cdot\vec{\nabla}\tilde{u} = \frac{1}{\rho}\overline{\overline{\sigma}}:\overline{\overline{D}} + r_e + \frac{1}{\rho}\mathrm{div}\left(\lambda\vec{\nabla}T\right)$$

Global balance equations in open systems	Mechanical energy and efficiency	Entropy and thermodynamics diagrams	Dissipation in flow
0000	000	00000000000	0.
Local form of the energy balance			

Stress-shear equation for a newtonian fluid

$$\overline{\overline{\sigma}} = \left(-p + \zeta \operatorname{div} \vec{C}\right) \overline{\overline{1}} + 2\mu \overline{\overline{D}}$$
$$\overline{\overline{D}} = \frac{1}{2} \left[\left(\vec{\nabla} \vec{C}\right) + {}^{t} \left(\vec{\nabla} \vec{C}\right) \right]$$

Local entropy balance equation

With the relation
$$d\tilde{u} = Tds + pd\left(\frac{1}{\rho}\right)$$
:

$$\rho T \frac{ds}{dt} = \rho r_{e} + \operatorname{div}\left(\lambda \vec{\nabla} T\right) + \operatorname{Tr}\left(2\mu \overline{\overline{D}} \cdot \overline{\overline{D}} + \zeta \operatorname{div}(\vec{C})\overline{\overline{1}} \cdot \overline{\overline{D}}\right)$$

Viscous dissipation term (newtonian incompressible fluid), in cylindrical coordinates:

$$\operatorname{Tr}\left(2\mu\overline{\overline{D}}\cdot\overline{\overline{D}}\right) = 2\mu\left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2\right]$$
$$+\mu\left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}\right)^2\right]$$