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Control volume

Global balance equations in open systems

Fixed control volume

Mass balance

Momentum balance

Total Energy balance
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Enthalpy

Flow work, shaft work and enthalpy

To push a volume V̇in of fluid inside the
control volume each second, the exterior
gives to the system:

Ẇin = pinV̇in =
pin

ρin
ṁin

That is a specific work

win =
pin

ρin

To extract the fluid of the control volume,
the system restitutes a specific work to the
exterior:

wout = −
pout

ρout

The “specific flow work” p
ρ

is included into the specific enthalpy h = ũ + p
ρ

For an open-system, under steady conditions:

Ẇ + Q̇ = ṁ∆

(
h +

C 2

2
+ gz

)
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Basic relations

Global balance equations in open systems

Mass balance
∂ (ρV )

∂t
= ṁin − ṁout

Momentum balance

˚
V

∂
(
ρ ~C
)

∂t
dv +

‹
S
ρ ~C
(
~C · ~n

)
ds =

˚
V
ρ~f dv +

‹
S
τ · ~nds

Energy balance

˚
V

∂

∂t

[
ρ

(
C 2

2
+ gz + ũ

)]
dv +

‹
S
ρ

[
C 2

2
+ gz + ũ +

p

ρ

](
~C · ~n

)
ds =

Ẇ + Q̇
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Practice

Exercice 1

The compressor of a turboreactor takes ṁ = 1.5 kg.s−1 of air at 0.8 bar with an internal
energy ũ = 192.5 kJ.kg−1 and a specific volume of 0.96 m3.kg−1.

The air is compressed at 30 bar and has then an internal energy ũ = 542.3 kJ.kg−1 and a
specific volume of 6.19× 10−2 m3.kg−1.

There is no change in velocity and no heat transfer.

What is the power of the compressor?

Exercice 2

In a nozzle, air is expanded without work or heat transfer.

The air enters with a specific enthalpy h = 776 kJ.kg−1 and a speed of 30 km/h.

It leaves the nozzle with a specific enthalpy h = 636 kJ.kg−1.

What is the outlet speed?
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Mechanical energy

Mechanical energy and efficiency

Turbomachines are used to vehiculate fluids, to compress them, or to recover
energy.

They imply generation or consumption of mechanical energy.

Mechanical energy: form of energy that can be converted to work completely and
directly by an ideal machine.

Specific mechanical energy of a fluid:

emech =
p

ρ
+

C 2

2
+ gz

flow energy + kinetic energy + potential energy

it looks like the right-hand side of

Ẇ + Q̇ = ṁ∆

(
h +

C 2

2
+ gz

)
doesn’t it?
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Efficiency

Mechanical energy and efficiency

Turbomachines are often operating adiabatically:

If no “irreversible losses”are present:

Ẇ = ṁ∆ (emech)

“losses”are actually a degradation of mechanical energy into thermal/internal
energy, i.e. losses of mechanical energy

The mechanical efficiency of a process is:

ηmech =
Mech.Energy Output

Mech.Energy Input
= 1−

Emech. loss

Emech. in

For a compression: η =
∆Ėmech,fluid

Ẇshaft

For an expansion: η = Ẇshaft

∆Ėmech,fluid
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Practice

Exercice 1

A fan absorbs 50 W to impulse 0.5 kg.s−1 of air
from rest to V = 12 m.s−1

What is its efficiency?

Exercice 2

The water in a lake is to be used to generate electricity.

The elevation difference between the free surfaces upstream and downstream of the dam is
50 m.

Water is to be supplied at a rate of 5000 kg.s−1.

The turbine has an efficiency of 80%.

What is the power available on the shaft?
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Gibbs equation

Gibbs equation

Entropy s: in thermodynamics, a measure of the number of specific ways in
which a thermodynamic system may be arranged.

A state function: the change in the entropy is the same for any process that goes
from a given initial state to a given final state (reversible or irreversible).

For a reversible process:

ds =
δqrev

T

First principle:

dũ = δw + δq

The internal energy ũ is also a state function. For a reversible process:

δwrev = −pd

(
1

ρ

)
Thus:

dũ = −pd

(
1

ρ

)
+ Tds

dh =
dp

ρ
+ Tds
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State laws

Equation of state for a perfect gas

p = ρrT (r = 287 J.kg−1.K−1 for air).

ũ = cv T

h = cpT

r = cp − cv

γ =
cp

cv
(γ = 1.4 for a diatomic gas).

Show that p = ρ (γ − 1) ũ, compute cp and cv for air.

Isentropic transformations

pρ−γ = cte

Tρ1−γ = cte

pγ−1T−γ = cte

p2
p1

=
(
ρ2
ρ1

)γ
p2
p1

=
(

T2
T1

) γ
γ−1

Celerity of sound waves: a2 =
(
∂p
∂ρ

)
s
. For a perfect gas: a =

√
γrT .
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State laws

Exercice 1

A liquid pump rises the pressure of water from 1 to 20 bars.

The mass-flow rate is 2 kg.s−1.

The specific volume is constant and is vL = 10−3 m3.kg−1.

What is the power needed for an isentropic process?

What is the temperature rise for an efficiency of 80%? (c = 4.18 kJ.kg−1.K−1).

Exercice 2

A compressor rises the pressure of air from 1 to 20 bars.

The mass-flow rate is 2 kg.s−1.

The process is isentropic: p(1/ρ)1.35 = cte. At the inlet the specific volume is

va = 0.8 m3.kg−1.

What is the power needed?

What is the increase in temperature?
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Stagnation variables

Stagnation enthalpy and temperature

Stagnation (or total) enthalpy: fluid brought to
rest with no heat or work transfer

h0 = h +
C 2

2

For a perfect gas with h = cpT , with constant
cp , one defines:

T0 = T +
C 2

2cp

Isentropic stagnation pressure and density

For a (fictious) isentropic transformation of a perfect gas:

p0

p
=

(
T0

T

) γ
γ−1

⇒ p0 = p

(
1 +

C 2

2cpT

) γ
γ−1

ρ0

ρ
=

(
T0

T

) 1
γ−1

⇒ ρ0 = ρ

(
1 +

C 2

2cpT

) 1
γ−1
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Stagnation variables

Isentropic stagnation pressure and density

For a perfect gas:
C 2

2cpT
=

γrT

2cpT
M2 =

γ − 1

2
M2

For a (fictious) isentropic transformation of a perfect gas:

T0 = T

(
1 +

γ − 1

2
M2

)
p0 = p

(
1 +

γ − 1

2
M2

) γ
γ−1

ρ0 = ρ

(
1 +

γ − 1

2
M2

) 1
γ−1
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Stagnation variables

Incompressible flow

For M = 0.3, what is the relative variation of density?

The flow is incompressible M ≤ 0.3

What becomes the relation between stagnation and static pressure in that case ?
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Application to turbomachinery

Application to turbomachinery

For an adiabatic situation:

dWshaft = Tds +
dp

ρ
+ d

C 2

2

dWshaft = T0ds0 +
dp0

ρ0

T0ds0 are dissipation of mechanical energy (losses).

For a perfect gas:

Wshaft = cp (T02 − T01)

= cpT01

(
T02

T01
− 1

)
In case of an isentropic transformation:

Wshaft = cpT01

(p02

p01

) γ−1
γ

− 1


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Application to turbomachinery

Thermodynamic diagrams

Entropic T , s and Enthalpic h, s diagrams.

For an adiabatic evolution in an open system:
Ordinates stand for the energy in enthalpic diagram.
Abscissa stand for the degree of irreversibility.
Losses are best shown in entropic diagram (

´ f
i

Tds).

Isentropic evolutions are vertical path.

In real cases, the entropy rises (2nd principle).

⇒ Definition of efficiencies.

Efficiency

Efficiency of a turbomachine is one of the most important performance
parameters, but also one of the most ill-defined.

Idea: to compare the actual work transfer to that which would occur in an ideal
process.

The ideal process: reversible between the same end states.

But what are the “relevant”end states?

And what is the reversible reference transformation?
Incompressible flow ⇒ straightforward definition based on the fluid mechanical energy
variation.
Compressible flow ⇒

´ f
i

dp
ρ is path-dependent.
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Application to turbomachinery

Polytropic transformation

For an infinitesimal transform between two defined end states:

δw − δwrev = δf > 0

Polytropic evolution: the reversible evolution the fluid would experience following
the same path as the actual transformation.

Actual energy transfer Wshaft .

Polytropic work τp =
´ f

i
dp
ρ

+ ∆
(

C 2

2

)
.

Internal losses:
∆f = Wshaft − τp

Polytropic coefficient

The real path ρ(p) is modeled:

pρ−k = cte

k =
ln
(

pf
pi

)
ln
(
ρf
ρi

)
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Application to turbomachinery

Polytropic efficiency for an ideal gas

k − 1

k
=

ln
(

T0,f

T0,i

)
ln
(

p0,f

p0,i

)
τp =

k

k − 1
r
(
T0,f − T0,i

)
ηp =

k
k−1
γ
γ−1
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Application to turbomachinery

Isentropic transformation

A reversible adiabatic transform between the same end states. But which ones ?

1 Between the same static pressures and velocities ⇒ isentropic efficiency ηis .

2 Between the same total (stagnation) pressures ⇒ total to total efficiency ηtt .

3 A mix ⇒ total to static efficiency ηts .

Visualisation of efficiencies in a h-s diagram

The state 02s is not an actual state!

For an expansion process (steam and gas

turbines):

1 ηis =
h2−h1+∆

(
C2

2

)
h2s−h1+∆

(
C2
2

)
2 exhaust kinetic energy wasted:

ηts =
h02−h01
h2s−h01

3 exhaust kinetic energy usefull:

ηtt =
h02−h01
h02s−h01
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Application to turbomachinery

Total to total efficiency of a stage in a T-s diagram

Compression stage Expansion stage

Compressible flow of an ideal gas: actual work measured with total temperature change.

For a stator, ∆h0 = 0 ⇒ ηtt of a stator has no meaning!

Compression: the dissipation is linked to p02,s − p02 for the rotor and to p03 − p02 for the

stator.
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Local form of the energy balance

Energy balance for a fluid particle

The time derivative of the kinetic energy and of the internal energy of a fluid particle
is equal to the sum of the external forces power and the heat power:

d

dt
(Ek + Eint ) = Pext + Pcal

Ek =

˚
V

1

2
ρC 2

Ei =

˚
V
ρũ

Pext =

˚
V
ρ~g · ~C +

‹
S

(
σ · ~n

)
· ~C

Pcal =

˚
V
ρre +

‹
S
λ~∇T · ~n

Local energy balance equation

d

dt

(
ρ

(
ũ +

1

2
ρC 2

))
+ρ

(
ũ +

1

2
ρC 2

)
div ~C = ρ~g · ~C +ρre +div

(
λ~∇T

)
+div

(
σ · ~C

)
Momentum balance equation (· ~C) + mass balance equation ⇒ Kinetic energy balance
equation. By substraction:

∂

∂t
ũ + ~C · ~∇ũ =

1

ρ
σ : D + re +

1

ρ
div
(
λ~∇T

)
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Local form of the energy balance

Stress-shear equation for a newtonian fluid

σ =
(
−p + ζdiv ~C

)
1 + 2µD

D =
1

2

[(
~∇ ~C
)

+ t
(
~∇ ~C
)]

Local entropy balance equation

With the relation dũ = Tds + pd
(

1
ρ

)
:

ρT
ds

dt
= ρre + div

(
λ~∇T

)
+ Tr

(
2µD · D + ζdiv( ~C)1 · D

)
Viscous dissipation term (newtonian incompressible fluid), in cylindrical coordinates:

Tr
(

2µD · D
)

= 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+µ

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2
]
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