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Fundamental law of turbomachines

Moment of momentum

Fluid enters at a flow rate ṁ at r1 with
tangential velocity Cθ1.

It leaves the control volume at r2 with
tangential velocity Cθ2.

Moment of momentum, steady version,
along a streamline:

τa = ṁ (r2Cθ2 − r1Cθ1)

Power:

τaω = ṁ (U2Cθ2 − U1Cθ1)

Link to energy exchange (steady process,
adiabatic):

∆h0 = ∆ (UCθ)
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Fundamental law of turbomachines

Rothalpy

Along a streamline, the quantity called
rothalpy is constant:

I = h0 − UCθ = cte

Using the velocity triangle:

I = h +
W 2

2
−

U2

2
= cte

Different contributions:

∆h0 = ∆ (UWθ) + ∆
(
U2

)
Aerodynamic forces work + Coriolis forces
(2~ω × ~W ) work.
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Axial-flow stage

Axial-flow compression stage

Axial-flow stage: U = cte along a streamline. If one assumes Cm = cte:

∆h0 = U (Wθ2 −Wθ1)

= UCm (tanβ2 − tanβ1)

Watch out: β < 0. For a compression, |Wθ2| < |Wθ1| ⇒ h2 > h1.

Stator: h0 = cte but |C3| < |C2| ⇒ h3 > h2.

Conversion of kinetic energy to pressure (and degradation to internal energy).

The relative flow is decelerated in the rotor. The absolute flow is decelerated in
the stator. Diffusion (adverse pressure gradient) limits deflection to 40o .
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Axial-flow stage

Mechanical energy loss

Mollier diagram for a steady blade cascade h02 = h01.

Losses are related to ∆p0:

ˆ
T0ds0 = −

ˆ
dp0

ρ0

∆f '
p02 − p01

ρ01

Losses with respect to isentropic are
related to kinetic energy:

Is. Loss =
1

2

(
C2

2s − C2
2

)
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2D Blade cascade

Blade cascade

∆h0 = UCm (tanβ2 − tanβ1)

Work depends on flow deflection ∆β.

Two-dimensional profile:

l : chord length
t: thickness of the profile
θ: camber angle.

α
′
1,2: blade inlet (outlet) angle

Two-dimensional cascade:

ξ: stagger angle
σ = l/s: solidity
α1,2: inlet (outlet) flow angle

i = α1 − α
′
1: incidence angle

δ = α2 − α
′
2: deviation

ε = α2 − α1: deflection
aoa = α1 − ξ: angle of attack
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2D Blade cascade

Cascade characteristics

Blade profiles: a certain thickness distribution
(NACA65, British C series,...)

Cascade characteristics: for given profiles,
stagger angle and solidity,

as a function of α1, M1, Re1:

Exit flow angle α2

stagnation pressure loss coefficient YP

The results are also presented as ε as a function of

aoa, as lift and drag coefficient or as energy loss

coefficient ζ.
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2D Blade cascade

Losses

Stagnation pressure loss coefficient
(compression):

Yp =
p01 − p02

p01 − p1

Energy loss coefficient:

ζ =

(
C 2

2s − C 2
2

)
C 2

1

Yp = ζ for M → 0.
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2D Blade cascade

Cascade parameters measurements

Measurements are performed ' 1l upstream and downstream of the cascade.

Mass-averaged quantities along one (two) pitch are given:

ṁ =

ˆ s

0
ρCxdy

tanα2 =

´ s
0 ρCxCydy´ s

0 ρC
2
x dy

Yp =

´ s
0 {(p01 − p02) / (p01 − p1)} ρCxdy´ s

0 ρCxdy
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2D Blade cascade

Application to rotors and stators

Cascades are stationary ⇒ straightforward for stator blades.

For rotors, replace:
α by β.
~C by ~W .
h0 by h0,rel .

Losses and efficiency: incompressible flow compression stage

Incompressible flow, temperature change is negligible, ρ = cte.

Upstream rotor: 1, between rotor and stator: 2, downstream stator: 3.

Actual work:
∆W = h03 − h01

Minimum work required to attain same final stagnation pressure:

∆Wmin = h03ss − h01

Along p = p03, second law gives:

∆Wmin = ∆W − T∆sstage

ηtt =
∆Wmin

∆W
= 1−

T∆sstage

h03 − h01
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Blade loading, boundary layers and losses

Losses and efficiency: incompressible flow compression stage

Accross the rotor, h0,rel = cte:

T∆srotor =
∆p0,rel

ρ
=

1

2
W 2

1 Yp,rotor

Accross the stator, h0 = cte:

T∆sstator =
∆p0

ρ
=

1

2
C2

2 Yp,stator

Thus:

ηtt = 1−
1
2

(
W 2

1 Yp,rotor + C2
2 Yp,stator

)
h03 − h01
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Blade loading, boundary layers and losses

Losses and efficiency: incompressible flow compression stage

Adverse pressure gradient: boundary layer growth
(and detachment).

Wake momentum thickness θ2 correlated to diffusion
on suction side.

θ2 =

ˆ s/2

−s/2

(
C

C∞

)(
1−

C

C∞

)
dy

Diffusion factor linked to solidity:

DF =

(
1−

C2

C1

)
+

( |Cθ2 − Cθ1|
2σC1

)
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Blade loading, boundary layers and losses

Effects of Reynolds number, Mach number and incidence
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Towards 3D: Radial equilibrium

Radial dependence & spanwise velocities

1)

U = rω ⇒ stagger
angles depend on r .

2)

Bernoulli theorem
accros streamlines:

C 2
θ

r
=

1

ρ

∂p

∂r

For hub-to-tip ratio
rh/rt . 0.8,

temporary imbalance
between centrifugal
forces and radial
pressure gradients.

streamlines bend

radially until sufficient

radial transport to

recover equilibrium.

3)

Simplified radial
equilibrium hypothesis:

Permanent flow;

Outside blade rows;

Cylindrical
streamtubes;

Viscous stress

neglected:
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Towards 3D: Radial equilibrium

Simplified radial equilibrium (incompressible flow)

C2
θ

r
=

1

ρ

dp

dr

dh = Tds −
dp

ρ

1

ρ

dp0

dr
=

dp

dr
+ Cθ

dCθ

dr
+ Cx

dCx

dr

1

ρ

dp0

dr
= Cx

dCx

dr
+

Cθ

r

d

dr
(rCθ)
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Towards 3D: Radial equilibrium

Radial repartition of the work: vortex law

Free vortex: rCθ = cte

Constant vortex: Cθ = cte

Forced vortex: Cθ = cte · r
Constant absolute angle: Cθ/Cz = cte

General vortex: Cθ = k1rn + k2
1
r
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Secondary viscous flows

“Passage vortex”: mechanisms

Flows induced in transverse (S3) surfaces, by
creation of meridional vorticity.

Vorticity tends to conserve.

Boundary layers on hub and casing are
vortical regions (vorticity ωp).

Deflection ε.

⇒ creation of a pair of passage vortices
(ωs).

ωs ' 2εωp .

Other explanation based on blade-to-blade
pressure gradient and streamline curvature.



One dimensional Theory Design methodology for an axial-flow stage Actual 3D flows

Secondary viscous flows

Other effects

Horse-Shoe vortex: induced by
boundary layer impinging on
leading edge.

Blade boundary layers and wakes:
low momentum fluid is centrifuged
(radial secondary flow).

Tip leakage vortex: induced by
flow instability in the radial gap
between blade and casing.
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Secondary viscous flows

Secondary flows, a misleading term

These mechanisms exist, but
they all non-linearly interact:

Extremely difficult to identify
them.
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Large scale instabilities

Stall, Stage stall and surge

Rotating stall: frequency of the order of
the rotating frequency.
Surge: system instability, slow time
scales.
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