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Introduction
”I have often been impressed by the scanty attention paid even by original workers in physics to the great

principle of similitude. It happens not infrequently that results in the form of laws are put forward as novelties

on the basics of elaborate experiments, which might have been predicted a priori after a few minutes’

consideration”.

Lord Rayleigh, The principle of similitude, Nature,vol.XCV, No2368,pp.66-68,1915.
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150˚ Italia Ferrari

Maranello Wind Tunnel

Experiments: how to design a model in order to
validate results and to understand what happens at full-scale ?

”We need to understand as
soon as possible why the
performance on track has not
matched the figures coming
out of the wind tunnel”
Stefano Domenicalli,
Scuderia Ferrari
Technical director.

The 150˚ Italia was lagged
aerodynamically due to a
problem with the calibration
of Ferrari’s wind tunnel in
2011.

Reason: Scale changing
(60% instead of 50%)
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Why is dimensional analysis crucial for setting up experiments?

Dimensionless numbers to generalize results

Basic equations simplification (balance equations in fluid mechanics)
by identification of negligible terms

Reduction of relevant parameters needed for an experimental study
(but also theoretical or numerical works)

Determination of criteria to respect for model validation
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Dimensional analysis applications

Scale 1/200

Scale 1/12

Scale 1/150
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Dimensional analysis applications
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History
Base and derived units

What is ”International System of Units” ?

Because of the importance of a set of well defined and easily accessible units universally agreed for
the multitude of measurements that support today’s complex society, units should be chosen so
that they are readily available to all, are constant throughout time and space, and are easy to
realize with high accuracy.

International System of Units (SI)

7 base units

SI = Modern metric system of measurement established in 1960 by the 11th General Conference
on Weights and Measures (CGPM, Conférence Générale des Poids et Mesures)
CGPM = intergovernmental treaty organization created by a diplomatic treaty called the Meter
Convention (51 Member States)
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History
Base and derived units

Use of the SI System around the world
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History
Base and derived units

What are the ”7 base units”?

Base quantity SI base unit name SI base unit symbol Dimension

Length meter m L

Mass kilogram kg M

Time second s T

Electric current ampere A I

Temperature Kelvin K Θ

Amount of substance mole mole N

Luminous intensity candela cd J

What happens to other quantities ?

All other quantities are derived quantities, which may be written in terms of the base
quantities by the equations of physics.

The dimensions of the derived quantities are written as products of powers of the
dimensions of the base quantities using the equations that relate the derived quantities to
the base quantities
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History
Base and derived units

Derived quantities

Example: v = ∆x
∆t ⇒ [v ] = L

T
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History
Base and derived units

Inhomogeneous result is necessarily wrong!
...on the other side, homogeneous result is not perforce good...

Homogeneity rules

Only homogenous terms may be added.

The argument of a transcendental mathematical function (exp, ln, sin, cos, tan) is
necessarily dimensionless.

A vector is added only to a vector (never a scalar !).

A good method to remember units and to validate results !!

Examples: Dynamic viscosity µ unit ?

Kinematic viscosity ν unit ?
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History
Base and derived units

Dynamic viscosity µ

µ = ratio between shear stress and velocity gradient perpendicular to shear plane

µ =
(

F
A

)
/
(

dv
dy

)
Where: F : Applied tangential force ⇒ [F ] = M.L.T−2

A: Section ⇒ [A] = L2

v : Velocity ⇒ [v ] = L.T 1

y : Distance ⇒ [y ] = L

Finally, [µ] = M.L−1.T−1 ⇒ Unit: kg .m−1.s−1

Kinematic viscosity ν

ν = µ
ρ

Where: ρ: Density ⇒ [ρ] = M.L−3

Finally, [ν] = L2.T−1 ⇒ Unit: m2.s−1
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Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Dimensional Analysis = a method to find empirical laws when a theoretical resolution is too
complex.

Let us consider a relation written as: w = f (x, y , z)

The quantity w is a function of dimensional quantities x , y and z (supposed to be independent).

The relation can be expressed as:

w = K(. . .)xαyβzγ

K is a dimensionless number and only depends on other dimensionless numbers (e.g. Cx = f (Re))

Finally:

How many relevant dimensionless numbers?

Vaschy-Buckingham theorem
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Vaschy-Buckingham Theorem (π-Theorem)
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If there are n variables in a problem and these variables contain k
primary dimensions (for example M, L, T ), the equation relating all the

variables will have (n-k) dimensionless products.

Considering a physical phenomenon described by the law:

f (q1, q2, ..., qn) = 0

where q1,q2,...,qn are n independant parameters.

Then:

φ (π1, π2, ..., πn−k ) = 0

Where πi : are dimensionless products defined from qi parameters.
In Fluid Mechanics ⇒ k = 3 (if temperature effects are negligible, otherwise k = 4).
”Never make a calculation until you know the answer”. Wheeler, John A. and Edwin F. Taylor.
Spacetime Physics, Freeman, 1966. Page 60.

Aimé Vaschy
(1857-1899)

Edgar Buckingham
(1867-1940)
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Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Dimensionless numbers deduction
Method

1 Choice of k variables among the n parameters qi (for example: q1,q2,...,qk )

2 Creation of the n − k groups:

π1 = q
α1
1 q

α2
2 . . . q

αk
k qk+1

π2 = q
β1
1 q

β2
2 . . . q

βk
k qk+2

.

.

.
πn−k = q

η1
1 q

η2
2 . . . q

ηk
k qk+n

3 Calculation of exponents values by writing each quantity with base units and resolution of
the k equation linear system for each exponent set {α1, α2, . . . , αk}, . . ., {η1, η2, . . . , η3}.

18 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



International System of Units
Dimensional Analysis

Similarity
Conlusion

Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Some applications of the Vaschy-Buckingham theorem
The drag force on a sphere

d : sphere diameter

U: characteristic velocity of the uniform flow

D: Drag force on the sphere

ρ: fluid density

µ: viscosity

⇒ n = 5

[d ] = L

[U] = LT−1

[D] = MLT−2

[ρ] = ML−3

[µ] = ML−1T−1

⇒ k = 3

⇒ n − k = 2 independent
dimensionless numbers
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Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Method
1 Choice of 3 parameters:

ρ, U, d

2 Creation of the 2 groups:

π1 = ρα1 Uα2 dα3µ

π2 = ρβ1 Uβ2 dβ3 D

3 Calculation of exponents:

[π1] =
(

ML−3
)α1

(
LT−1

)α2 Lα3
(

ML−1T−1
)

[π2] =
(

ML−3
)β1

(
LT−1

)β2 Lβ3 MLT−2

Then:

α1 + 1 = 0
−3α1 + α2 + α3 − 1 = 0

−α2 − 1 = 0

And:

β1 + 1 = 0
−3β1 + β2 + β3 + 1 = 0

−β2 − 2 = 0

so, α1 = −1
α2 = −1
α3 = −1

β1 = −1
β2 = −2
β3 = −2

π1 = µ
ρUd = 1

Re

π2 = D
ρd2U2 = π

8 CD

CD = f (Re)
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Dimensional Analysis of balance equations

Reynolds number
= measure of the ratio of inertial forces to viscous forces

Re = ρUd
µ = Ud

ν

ρ: Fluid density
U: Fluid velocity
d : Characteristic length
µ: Dynamic viscosity
ν: Kinematic viscosity

G.G. Stokes (1851)

O. Reynolds (1883)
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CD : Drag coefficient
Re: Reynolds number

CD = D
1
2ρU2 πd2

4

For Re � 1: CD = 24
Re (Stokes)

For 0.1 < Re < 5: CD = 24
Re

(
1 + 3

16 Re
)

(Lamb and Oseen)

For 5 < Re < 800: CD = 24
Re

(
1 + 0.15Re0.687

)
(Schiller-Naumann)

For 5 < Re < 400 000: CD = 24
Re + 6

1+
√

Re
+ 0.4 (White)
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The drag force on a golf ball

⇒ n=6: d , U, D, ρ, µ, ε.
[D] = MLT−2

[d ] = L

[U] = LT−1

[ρ] = ML−3

[µ] = ML−1T−1

[ε] = L
⇒ k=3: M, L, T
⇒ n-k=3 independent dimensionless numbers
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Method
1 Choice of 3 parameters:ρ,U,d

2 Creation of the 3 groups:

π1 = ρα1 Uα2 dα3µ

π2 = ρβ1 Uβ2 dβ3 D
π3 = ργ1 Uγ2 dγ3 ε

3 Calculation of exponents:
α1 = −1
α2 = −1
α3 = −1

β1 = −1
β2 = −2
β3 = −2

γ1 = 0
γ2 = 0
γ3 = −1

π1 = µ
ρUd = 1

Re
Reynolds Number

π2 = D
ρd2U2 = π

8 CD

Drag coefficient
π3 = ε

d
Relative roughness

CD = f
(
Re, εd

)
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Baseball

Golf ball

tennis ball
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Order of magnitude of balance equations terms

Estimation of balance equations terms permits to:

1 neglect unimportant terms ⇒ Problem simplification

2 obtain information about the solution before solving the problem

Momentum conservation equation (Navier-Stokes equation):

ρ
(
∂v
∂t + v.∇v

)
= −∇p + ρg +∇.τ

(1) (2) (3) (4) (5)

26 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



International System of Units
Dimensional Analysis

Similarity
Conlusion

Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Order of magnitude of balance equations terms

Estimation of balance equations terms permits to:

1 neglect unimportant terms ⇒ Problem simplification

2 obtain information about the solution before solving the problem

Momentum conservation equation (Navier-Stokes equation):

ρ
(
∂v
∂t + v.∇v

)
= −∇p + ρg +∇.τ

(1) (2) (3) (4) (5)

(1): non-stationary acceleration per unit volume
(2): convective acceleration per unit volume
(3): pressure forces per unit volume
(4): body forces per unit volume
(5): viscous forces per unit volume
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Order of magnitude of the different terms

(1) ⇒ ρ ∂v
∂t ≈ ρ

U
t0

= ρf0U

(2) ⇒ ρv.∇v ≈ ρ U2

d

(3) ⇒ ∇p ≈ ∆p
d

(4) ⇒ ρg ≈ ρg

(5) ⇒ ∇.τ = µ∇2v + µ
3∇ (∇.v) (for a constant viscosity Newtonian fluid)

∇.τ ≈ µ U
d2

Comparison

(2)
(5) = ρv.∇v

∇.τ ≈
ρ U2

d
µU

d2

= ρUd
µ

(2)
(4) →

ρv.∇v
ρg ≈

ρ U2

d
ρg = U2

gd

(1)
(2) =

ρ ∂v
∂t

ρv.∇v ≈
ρf0U

ρU2

d

=
f0d
U

(3)
(2) = ∇p

ρv.∇v ≈
∆p
d

ρ U2
d

= ∆p

ρU2
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Reynolds number Re = Inertial forces
Viscous forces
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27 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



International System of Units
Dimensional Analysis

Similarity
Conlusion

Vaschy-Buckingham Theorem (π-Theorem)
Dimensional Analysis of balance equations
Principal dimensionless numbers
Dimensional Analysis of balance equations

Order of magnitude of the different terms

(1) ⇒ ρ ∂v
∂t ≈ ρ

U
t0

= ρf0U

(2) ⇒ ρv.∇v ≈ ρ U2

d

(3) ⇒ ∇p ≈ ∆p
d

(4) ⇒ ρg ≈ ρg

(5) ⇒ ∇.τ = µ∇2v + µ
3∇ (∇.v) (for a constant viscosity Newtonian fluid)

∇.τ ≈ µ U
d2

Comparison

(2)
(5) = ρv.∇v

∇.τ ≈
ρ U2

d
µU

d2

= ρUd
µ

(2)
(4) →

ρv.∇v
ρg ≈

ρ U2

d
ρg = U2

gd

(1)
(2) =

ρ ∂v
∂t

ρv.∇v ≈
ρf0U

ρU2

d

=
f0d
U

(3)
(2) = ∇p

ρv.∇v ≈
∆p
d

ρ U2
d

= ∆p

ρU2

Reynolds number Re = Inertial forces
Viscous forces

Froude number Fr 2 = Inertial forces
Gravity forces

Strouhal number St = Non-stationary acceleration
Convective acceleration
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Reynolds number Re = Inertial forces
Viscous forces

Froude number Fr 2 = Inertial forces
Gravity forces

Strouhal number St = Non-stationary acceleration
Convective acceleration

Euler number Eu = Streamwise pressure variation
Inertial forces

for incompressible pipe/channel flows
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Number Definition Meaning Use

Reynolds Re = ρUd
µ

Inertial forces
Viscous forces

Froude Fr = U√
gd

Inertial forces
Gravity forces free surface flow

Mach M = U
c

flow velocity
sound velocity compressible flow

Strouhal St = fd
U

Non-stationary acceleration
Convective acceleration non-stationary flow

Weber We = ρU2d
σ

Inertia
surface tension two-phase flow

Taylor Ta = Ω2d4

ν2
Inertial forces due to rotation

Viscous forces rotating flows

Grashof Gr = gβ∇Td3

ν2
Buoyancy forces

viscous forces natural convection

Prandtl Pr = ν
α =

µcp
k

viscous diffusion
thermal diffusion fluid property, for heated flow

Schmidt Sc = ν
D

viscous diffusion
molecular diffusion fluid property, for mass transfer flow

Nusselt Nu = hl
k

Convective heat transfer
Conductive heat transfer forced convection flow
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Let us consider a Newtonian incompressible fluid with reference parameters: to , lo , vo , ρo , po , µo ,
go for, respectively time, length, velocity, density, pressure, viscosity and gravity scales.

Reduced variables:

t∗ = t
to

, x∗ = x
lo

, y∗ = y
lo

, z∗ = z
lo

v∗ = v
vo

, p∗ = p
po

, g∗ = g
go

Navier-Stokes equations:

∇.v = 0 (1)

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p + µ∇2v + ρg (2)

Operators:

∇ = 1
lo

(
e1

∂
∂x∗ + e2

∂
∂y∗ + e3

∂
∂z∗

)
= 1

lo
∇∗

∇2 = 1
l2o

(
∂2

∂x2
∗

+ ∂2

∂y2
∗

+ ∂2

∂z2
∗

)
= 1

l2o
∇2
∗

∂
∂t = 1

to
∂
∂t∗

v.∇v =
v2
o

lo
v∗.∇∗v∗
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(1) ⇒
(

vo
lo

)
∇∗.v∗ = 0 ⇒ ∇∗.v∗ = 0

(2) ⇒ ρo vo
to

∂v∗
∂t∗ +

ρo v2
o

lo
v∗.∇v∗ = − po

lo
∇∗p∗ + µo vo

l2o
µ∗∇2

∗v∗ + ρo go g∗(
fo lo
vo

)
∂v∗
∂t∗ + v∗.∇∗v∗ = −

(
po
ρo v2

o

)
∇∗p∗ +

(
µo

ρo vo lo

)
µ∗∇2

∗v∗ +

(
go lo
v2
o

)
g∗

Dimensionless numbers appear: St = fo lo
vo

, Eu = po
ρo v2

o
, Re = ρo vo lo

µo
, Fr =

v2
o

go lo

St ∂v∗
∂t∗ + v∗.∇∗v∗ = −Eu∇∗p∗ + 1

Re µ∗∇
2
∗v∗ + 1

Fr g∗

If we choose po = ρo v 2
o as pressure reference:

St ∂v∗
∂t∗ + v∗.∇∗v∗ = −∇∗p∗ + 1

Re µ∗∇
2
∗v∗ + 1

Fr g∗

For a stationary flow:

v∗.∇∗v∗ = −∇∗p∗ + 1
Re µ∗∇

2
∗v∗ + 1

Fr g∗

Mass

Momentum
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For compressible flows, if fluid is assimilated to an ideal gas:

Mass

St ∂ρ∗∂t∗ +∇∗.ρ∗v∗ = 0

Momentum

Stρ∗
∂v∗
∂t∗ + ρ∗v∗.∇v∗ = − 1

γM2∇∗p∗ + 1
Re

[
µ∗∇2

∗v∗ + µ∗
3 ∇∗ (∇∗.v∗)

]
+ 1

Fr ρ∗g∗

Energy

ρ∗cp∗

[
St ∂T∗

∂t∗ + v∗.∇∗T∗
]

= 1
RePr∇∗. (k∗∇∗T∗)− γ−1

γ p∗∇∗.v∗ + (γ − 1) M2

Re φv∗

where: φv is the viscous dissipation function, T is the temperature and γ is the heat capacity ratio.
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”I found that I was fitted for nothing so well as the study of Truth, as
having a nimble mind and versatile enough to catch the resemblance of
things (which is the chief point), and at the same time steady enough to
fix and distinguish their subtle differences.”

Francis Bacon (1561-1628)

Relationship between the model and the prototype in testing?

1 Geometric similarity

2 Kinematic similarity

3 Dynamic similarity

⇒ Complete similitude
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Geometric similarity

Two geometrical objects are called similar if they both have the same shape:
all linear length scales of one protoype are a fixed ratio of all corresponding length scales of the
model and all angles are preserved.

l
L = α, b

B = α, B
L = b

l

But, in some cases it is not possible to have a complete geometric similarity!!
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⇒ hydraulic models are sometimes distorted with different scale ratios in horizontal and vertical
directions.

Watch out! Scale decrease may create new phenomena!

(for example, capillarity, surface tension...)
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Kinematic similarity

This similarity requires that the length and time scales be similar between the model and the
prototype implying that velocities at corresponding points be similar.

⇒ Then fluid streamlines are similar

vA
uA

= va
ua

,
vB
uB

=
vb
ub

, . . ..

Remark: Kinematic similarity includes geometric similarity.
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Dynamic similarity

Two geometrically similar objects are said to be dynamically similar if the forces acting at
corresponding locations on the two objects are everywhere in the same ratio.

FAv
FAh

= Fav
Fah

, FBv
FBh

= Fbv
Fbh

, . . ..

Of the three similarities, the dynamic similarity is the most restrictive.

To achieve dynamic similarity, all dimensionless numbers relevant to the flow must be preserved
between the model and the protoype:

(π1)model = (π1)prototype , (π2)model = (π2)prototype , . . .
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Similarity conditions for incompressible flows

Dimensionless numbers: Reynolds, Froude

When a flow has no free surface (for example: internal pipe flows), gravity forces may be
included to pressure forces in movement equations as the hydraulic charge: po = p + ρgz
(in replacement of the pressure). Then it is no more necessary to use Froude number in
similarity conditions.

When a flow has a free surface with a changing position, we can not include gravity forces
in the hydraulic charge, Reynolds and Froude numbers have also to be preserved to
achieve dynamic similarity.

If surface tension intervenes in studied phenomena, then Weber number must be preserved
with Reynolds and Froude numbers.
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Similarity conditions for compressible flows

Dimensionless numbers: Reynolds, Mach

Gravity forces can be neglected so Froude number is not necessary to achieve dynamic
similarity (in the case of great scale atmospheric flows, gravity forces must be taken into
account).

In practice, it is difficult to preserved Mach and Reynolds numbers for reasonable size of
models. So, when Mach number is small, its effects are theoretically calculated and we
choose only Reynolds number to conserve dynamic similarity.

On the other hand, for a great Mach number, compressibility effects are preponderant then
Mach number must be conserved and Reynolds number must have a realistic value. As
the model size reduction decreases Reynolds number, we have to perform experiments with
a higher pressure or a weaker temperature in order to have a valid Reynolds number to
operate: using pressurized or cryogenic wind tunnel is necessary in transsonic flow studies.
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40 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



International System of Units
Dimensional Analysis

Similarity
Conlusion

Dimensional analysis is important to:

Find physical laws

Simplify problems

Detect relevant parameters

Build a model

In order to achieve this analysis, it is important to master:

Vaschy-Buckingham theorem (π-Theorem)

Know dimensionless numbers

Know similarity conditions rules

41 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction


	International System of Units
	History
	Base and derived units

	Dimensional Analysis
	Vaschy-Buckingham Theorem (-Theorem)
	Dimensional Analysis of balance equations
	Principal dimensionless numbers
	Dimensional Analysis of balance equations

	Similarity
	Model geometry
	Similarity conditions

	Conlusion

