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Introduction

"I have often been impressed by the scanty attention paid even by original workers in physics to the great
principle of similitude. It happens not infrequently that results in the form of laws are put forward as novelties
on the basics of elaborate experiments, which might have been predicted a priori after a few minutes’

consideration”.

Lord Rayleigh, The principle of similitude, Nature,vol. XCV, No2368,pp.66-68,1915.
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"We need to understand as The 150° Italia was lagged
soon as possible why the aerodynamically due to a
performance on track has not problem with the calibration
of Ferrari's wind tunnel in
2011.
Reason: Scale changing

matched the figures coming
out of the wind tunnel”
(60% instead of 50%)

Stefano Domenicalli,
Scuderia Ferrari
Technical director.
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Maranello Wind Tunnel

Experiments: how to design a model in order to
validate results and to understand what happens at full-scale ?
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Why is dimensional analysis crucial for setting up experiments?
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Why is dimensional analysis crucial for setting up experiments?
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Why is dimensional analysis crucial for setting up experiments?
@ Dimensionless numbers to generalize results
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Why is dimensional analysis crucial for setting up experiments?

@ Dimensionless numbers to generalize results
@ Basic equations simplification (balance equations in fluid mechanics)
by identification of negligible terms
("]
("]
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Why is dimensional analysis crucial for setting up experiments?
@ Dimensionless numbers to generalize results

@ Basic equations simplification (balance equations in fluid mechanics)
by identification of negligible terms

@ Reduction of relevant parameters needed for an experimental study
(but also theoretical or numerical works)
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Dimensional analysis applications
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Dimensional analysis applications
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International System of Units

units

Outline

© International System of Units

DGN e ETETERS

7 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



International System of Units

History
Base and derived units

What is " International System of Units” ?

Because of the importance of a set of well defined and easily accessible units universally agreed for
the multitude of measurements that support today’s complex society, units should be chosen so
that they are readily available to all, are constant throughout time and space, and are easy to
realize with high accuracy.

@ International System of Units (SI)
@ 7 base units

S| = Modern metric system of measurement established in 1960 by the 11th General Conference
on Weights and Measures (CGPM, Conférence Générale des Poids et Mesures)

CGPM = intergovernmental treaty organization created by a diplomatic treaty called the Meter
Convention (51 Member States)
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International System

History

Definition of the
universal length,
volume, and

The Decimal
Metric System is
teachedinFrench

Systéme
d’Unités
International

Convention du Métre

mass.
Schools Use of new units with the (S1)
| T International Electrical Congress
Thislength is He promotes the Metric System QA
Wl il with the « second » defined in [
astronomy
| (mm.g;s)
Borda, Condorcet, Lagrange, | |(m,k&5.A) I
Laplace, Lavoisier, Monge and Creation of the CGS System
Tillet create the Decimal Metric (cm,gs) (m,kg,s,AK,Cd)
System (meter, « grave ») il )
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International System of Units

History

Base and derived units

Non-Metric: Il n.a:

1800 1820 1840 1860 1880 1900 1920 1940 19 0

Use of the S| System around the world
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International System of Units

Histor
Base and derived units

Base quantity Sl base unit name | Sl base unit symbol Dimension
Length meter m L
Mass kilogram kg M
Time second s T
Electric current ampere A |
Temperature Kelvin K (€]
Amount of substance mole mole N
Luminous intensity candela cd J

V.
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International System of Units

Histor
Base and derived units

W are the "7 base units”?

Base quantity Sl base unit name | Sl base unit symbol Dimension
Length meter m L
Mass kilogram kg M
Time second s T
Electric current ampere A |
Temperature Kelvin K (€]
Amount of substance mole mole N
Luminous intensity candela cd J

V.

What happens to other quantities ?

@ All other quantities are derived quantities, which may be written in terms of the base
quantities by the equations of physics.

@ The dimensions of the derived quantities are written as products of powers of the
dimensions of the base quantities using the equations that relate the derived quantities to
the base quantities
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International System of

Base and derived units

Derived quantities

0 — Ax _ L
Example: e = =
L NAMES AND SYMBOLS
s on
kilogram % %
(kgm/s?) [ pascal . my gy @[J/kg: siwevl@ (rkg)
PRESSURE, ABSORBED DOSE
STRESS DOSE EQUIVALENT
meter
w—m) wa@uzs) becquerel mn hertz =~ (1/5)
NERG Y, WORK, POWER, ACTIVITY FREQUENCY
second HEAT FLOW RATE '\~ (0F A Rapionucuoe)
hem@(wwm tesla @ (Wh/m?)
mole INDUCTANCE MAGNETIC
FLUX DERSITY
- ACCELERATION
SlELE valt # (W/A)
e (V)
VOLTAGE,
ELECTROMOTIVE
ELECTRIC CURRENT o s FORCE
= degree —~ (K) farad ohm o~ (V/A)  siemens —~ (1/0)
kelvin  Celius e o @ @
CELSIUS CAPACITANCE RESISTANCE CONDUCTANCE
B b TEMPERATURE
S PC=T/K-27315
candela 3
tox o i) (cdsy steradian e o me)
»
LUMINOUS INTENSITY
Dyn ILLUMINANCE TUMINOUS S0LID ANGLE PLANE ANGLE
FLUX
Paris
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International System of Units

Histor
Base and derived units

Inhomogeneous result is necessarily wrong!

...on the other side, homogeneous result is not perforce good...

Homogeneity rules

@ Only homogenous terms may be added.

@ The argument of a transcendental mathematical function (exp, In, sin, cos, tan) is
necessarily dimensionless.

@ A vector is added only to a vector (never a scalar !).

A good method to remember units and to validate results !!

Examples: Dynamic viscosity p unit ?

Kinematic viscosity v unit ?

ogre o e
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International System of Units

Histor
Base and derived units

namic viscosity p

o = ratio between shear stress and velocity gradient perpendicular to shear plane

w=(5/(%)

Where:  F: Applied tangential force = [F] = M.L. T2
A: Section = [A] = L?
v: Velocity = [v] = L.T*
y: Distance = [y] = L
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International System of Units

Histor
Base and derived units

Dynamic viscosity p

o = ratio between shear stress and velocity gradient perpendicular to shear plane

w=(5/(%)

Where:  F: Applied tangential force = [F] = M.L. T2
A: Section = [A] = L?
v: Velocity = [v] = L.T*
y: Distance = [y] = L

Finally, [u] = M.L=:. T~ = Unit: kg.m™1.s7!
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International System of Units

Histor
Base and derived units

Dynamic viscosity p

o = ratio between shear stress and velocity gradient perpendicular to shear plane

w=(5/(%)

Where:  F: Applied tangential force = [F] = M.L. T2
A: Section = [A] = L?
v: Velocity = [v] = L.T*
y: Distance = [y] = L

Finally, [u] = M.L=:. T~ = Unit: kg.m™1.s7!

Kinematic viscosity v

| A

N
Il
D=

Where:  p: Density = [p] = M.L™3

v
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International System of Units

Histor
Base and derived units

Dynamic viscosity p

o = ratio between shear stress and velocity gradient perpendicular to shear plane

w=(5/(%)

Where:  F: Applied tangential force = [F] = M.L. T2
A: Section = [A] = L?
v: Velocity = [v] = L.T*
y: Distance = [y] = L

Finally, [u] = M.L=:. T~ = Unit: kg.m™1.s7!
v
Kinematic viscosity v
v=~
P

Where:  p: Density = [p] = M.L™3

1

Finally, [v] = L2. T~ = Unit: m®.s~
i
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Vaschy-Buckir

Dimensional Analysis Dime
Principal dimensionless numbers
Dimensional Anal f bala

Outline

© Dimensional Analysis

DGN ETMETIERS

Paris

Amélie Danlos, Florent Ravelet

Experimental methods for fluid flows:



Dimensional Analysis

Dimensional Analysis = a method to find empirical laws when a theoretical resolution is too
complex.

Let us consider a relation written as: w = f (x, y, z)

The quantity w is a function of dimensional quantities x, y and z (supposed to be independent).

The relation can be expressed as:

w=K(...)x%FzY J

K is a dimensionless number and only depends on other dimensionless numbers (e.g. Cx = f(Re))
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Dimensional Analysis

Dimensional Analysis = a method to find empirical laws when a theoretical resolution is too
complex.

Let us consider a relation written as: w = f (x, y, z)
The quantity w is a function of dimensional quantities x, y and z (supposed to be independent).

The relation can be expressed as:

w=K(...)x%FzY J

K is a dimensionless number and only depends on other dimensionless numbers (e.g. Cx = f(Re))

Finally:

How many relevant dimensionless numbers? J
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Theorem)
Dimensional Analysis ime A s ance equations

f balan uations

Dimensional Analysis = a method to find empirical laws when a theoretical resolution is too
complex.

Let us consider a relation written as: w = f (x, y, z)
The quantity w is a function of dimensional quantities x, y and z (supposed to be independent).

The relation can be expressed as:

w=K(...)x%FzY J

K is a dimensionless number and only depends on other dimensionless numbers (e.g. Cx = f(Re))

Finally:
How many relevant dimensionless numbers? J
Vaschy-Buc ham theorem
Dgn AW ETVETERS
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Vaschy Bucklngham Theorem ( -Theovem)
Dimensional Analysis nal A

> m\(ml\ dimension
Dime

If there are n variables in a problem and these variables contain k
primary dimensions (for example M, L, T), the equation relating all the
variables will have (n-k) dimensionless products.

Aimé Vaschy Edgar Buckingham
(1857-1899) Considering a physical phenomenon described by the law: (1867-1940)

f(q1,q2,.--,Gn) =0

where q1,q2,...,qn are n independant parameters.
Then:

¢ (71, T2y ooy Th—k) =0 J

Where 7;: are dimensionless products defined from q; parameters.

In Fluid Mechanics = k = 3 (if temperature effects are negligible, otherwise k = 4).

”"Never make a calculation until you know the answer”. Wheeler, John A. and Edwin F. Taylor.
Spacetime Physics, Freeman, 1966. Page 60.
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Dimensional Analysis

Dimensionless numbers deduction
Method

@ Choice of k variables among the n parameters g; (for example: q1,q2,...,qk)

@ Creation of the n — k groups:

1 = q{;qu._.qaquﬂ
T = gt a2 k2

n
Tomk = 4167 ¢ Gk

© Calculation of exponents values by writing each quantity with base units and resolution of

the k equation linear system for each exponent set {a1, a2, ..., ax}, ..., {m,m2,...,m3}.
DGN e ETETERS
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Vaschy-Buckingham Theorem (W-Theovem)
Dimensional Analysis Dimensional Anal e s

Principal dimen
Dimensional Anal f balance equations

Some applications of the Vaschy-Buckingham theorem
The drag force on a sphere

e, o
e I R

d: sphere diameter

U:  characteristic velocity of the uniform flow
D: Drag force on the sphere

p: fluid density

Qi viscosity
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Vaschy-Buckingham Theorem (W-Theovem)
Dimensional Analysis Dimensional Anal e s

Principal dimen
Dimensional Anal f balance equations

Some applications of the Vaschy-Buckingham theorem
The drag force on a sphere

e, o
e I R

d: sphere diameter

U:  characteristic velocity of the uniform flow = n=5
D: Drag force on the sphere

p: fluid density

Qi viscosity
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Vaschy-Buckingham Theorem (7r-Theorem)
I A of b. ations

Dimensional Analysis

Some applications of the Vaschy-Buckingham theorem
The drag force on a sphere

[d =L
v =7t

[D] = MLT?
] =mL"3

W] =mMLrT!

Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



Vaschy-Buckingham Theorem (7r-Theorem)
I A of b. ations

Dimensional Analysis

Some applications of the Vaschy-Buckingham theorem
The drag force on a sphere

@ =L

w =Lr = k=3

[D] = MLT? = n — k = 2 independent
1] — ML3 dimensionless numbers
(W] =mLiT
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis ension n s of ba

onal Ana balance equations
numbers
f balance equations

Method

e Choice of 3 parameters:
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis ension n s of ba

onal Ana balance equations
numbers
f balance equations

Method
e Choice of 3 parameters: p, U, d
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis ension n s of ba

onal Ana balance equations
numbers
uations

Method
e Choice of 3 parameters: p, U, d
@ Creation of the 2 groups:
T = p1LyU*2de3
pPruP24P3p

3
IS
|
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Vaschy-Buckingham Theorem (
Dimensional Analysis Dir al Anal f ba

|
Principal dimension

Dir

Method
e Choice of 3 parameters: p, U, d
@ Creation of the 2 groups:
po1U2dY3

1 =
pBl UP2d83p

o

@ Calculation of exponents:

[m1]

[m] =

(ML= (LT H) %2 L3 (ML™'T 1)
(ML=3)Pt (LT =1)%2 13 LT 2

VA ET METIERS

Dgn

et Experimental methods for fluid flows: an introduction

20 Amélie Danl



Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Anal f bala quations

Principal dimensionless numbers
Dimensional Anal f balance equations

Method
e Choice of 3 parameters: p, U, d

@ Creation of the 2 groups:
pal U2 do¢3H

1 =
m = pPruf2d®ip
@ Calculation of exponents:
[m] = (ML) (LT~ H)*2 13 (MLTITY)
m] = (ML™3)Pt (LT—1)%2 LPamLT =2
Then:
a;+1 = 0
—3a;1 +ar+az —1 = 0
—ap — 1 = 0
And:
fi+1 = 0
381 +B+B+1 = 0
—B2—-2 = 0
SO, o = -1 g = -1
[6%) = -1 62 = -2
a3 = —1 53 = -2
DN a ET METIERS
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Vaschy-Buckingham Theorem (W-Theovem)
Dimensional Analysis Dimensional Anal oi

Principal dimensionle:
Dimensional Anal f

Method
e Choice of 3 parameters: p, U, d
@ Creation of the 2 groups: M o= & _ 1
T — poq U2 do¢3H /JUd Re
m = phufd’p Ty = pdg)‘uf =350
Calculation of exponents:
o P
[m] = (ML) (LT~ H)*2 13 (MLTITY)
[m] = (ML) (LT=1)2 P pLT 2
Then:
a;+1 = 0
—3a;1 +ar+az —1 = 0
—ap — 1 = 0
And:
fi+1 = 0
381 +B+B+1 = 0
—B2—-2 = 0
so, ap = -1 B = -1
[6%) = -1 62 = -2
a3 = —1 53 = -2
Dun VA ET METIERS

20 Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



Vaschy-Buckingham Theorem (W-Theovem)
Dimensional Analysis Dimensional Anal oi

Principal dimensionle:
Dimensional Anal f

Method Cp="f(Re) |
e Choice of 3 parameters: p, U, d
@ Creation of the 2 groups: k1
™ = 50d ~ Re
™ _ peLU2d3 P
m = phuRdBD T = pdg)‘uf =35Cp
alculation of exponents:
@ Calculati f exp
[m] = (ML) (LT~ H)*2 13 (MLTITY)
[m] = (ML) (LT=1)2 P pLT 2
Then:
a;+1 = 0
—3a;1 +ar+az —1 = 0
—ap — 1 = 0
And:
fi+1 = 0
381 +B+B+1 = 0
—B2—-2 = 0
SO, o = -1 g = -1
[6%) = -1 62 = -2
a3 = —1 53 = -2
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Vaschy-Bucklngham Theorem (7-Theorem)
Dimensional Analysis Dimensional Ana alance equations

| dimensionle:
Dimensional Anal f balance equations

Reynolds number

= measure of the ratio of inertial forces to viscous forces

Fluid density

Fluid velocity
Characteristic length
Dynamic viscosity
Kinematic viscosity

G.G. Stokes (1851)

SELCR

Loeaniveiar Besw

Toar b wvw Rearw

g g

Feamdsculeevod M eme: Fenbnsae el 1w e e wleecodoie: squiarkd
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Vaschy Buckingham Theorem (
Dimensional Analysis Dir al Anal f ba

I
Principal dimensionless numbers
Dime al Anal f bal

Cp: Drag coefficient
Re: Reynolds number

@ For Re < 1: Cp = 2% (Stokes)
@ For0.1 < Re<5: Cp =2 (1+ £Re) (Lamb and Oseen)
@ For5 < Re < 800: Cp = % (1 + O.15Re°'687) (Schiller-Naumann)
@ For 5 < Re < 400 000: Cp = + \/7 + 0.4 (White)
Dun VA ET METIERS
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Dimensional Analysis \ al

num

The drag force on a golf ball
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Dimensional Analysis D \ al

num

The drag force on a golf ball

= n=6: d, U, D, p, p, e
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\/aschy-Buckmgham Theorem ("r-Theovem)
Dimensional Anal ce equations
Principal dimen
[Mmcnz\on:w\ Anal

Dimensional Analysis

equations

The drag force on a golf ball

= n=6: d, lé D, p, p €

[D] = MLT—
=1

U] =LT !

[p] = mML™?

[4] = MLTIT

= n-k=3 independent dimensionless numbers

DN~ lwid
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Vaschy-Buckingham Theorem (W-Theovem)
Dimensional Analysis Dimensional Anal

Principal dimensionle:
Dimensional Anal f

Method
o Choice of 3 parameters:p,U,d
@ Creation of the 3 groups:
PO U243
m = pPrufedPip
p’Yl Ur2d73e

ol
I

3 =
@ Calculation of exponents:
a = -1 B = -1 mnw = 0
a = -1 B2 = =2 Y2 = 0
az = -1 Bz = =2 o= -1
= Iﬁd:L 7T2:pd12)U2:%CD =g
Reynolds Number Drag coefficient Relative roughness

DGN e ETETERS
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Vaschy- Bucklngham Theorem
Dimensional Analysis Dime

Principal dimensionles:

Dime 1al Anal

relative roughness .

0.5 P
airflow separated
flow.

0.4

,'l 25x1072

=0 (smeoth) airflow separated
\ Tlow.

IR RS

0.1 F=5x10°

£ _1ex109
B o
) 156x10

4x10% 10° 4x10° 10° 4108

Baseball

Golf ball

tennis ball

DGN ET METIERS

Paris

Amélie Danlos, Florent Ravelet Experimental methods for fluid flows: an introduction



Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime

Order of magnitude of balance equations terms
Estimation of balance equations terms permits to:
@ neglect unimportant terms = Problem simplification

e obtain information about the solution before solving the problem

Momentum conservation equation (Navier-Stokes equation):

p (% +v.Vv)=—Vp+pg+ V.7
®n @ @ @ ©
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime

Order of magnitude of balance equations terms

Estimation of balance equations terms permits to:
@ neglect unimportant terms = Problem simplification

e obtain information about the solution before solving the problem

(1): non-stationary acceleration per unit volume
(2): convective acceleration per unit volume
(3): pressure forces per unit volume

(4): body forces per unit volume

(5): viscous forces per unit volume

Momentum conservation equation (Navier-Stokes equation):

p (% +v.Vv)=—Vp+pg+ V.7
®n @ @ @ ©
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aschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension numbers
Dimensional Ana f balan ations

Order of magnitude of the different terms

DGN e ETETERS

27 Amélie Danlo:

Florent Ravelet Experimental methods for fluid flows: an introduction



Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensionless numbers
Dime al Anal f bal

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensionless numbers
Dime al Anal f bal

Order of magnitude of the different terms
® (1) = p§i ~py = phU

@ (2) = pv.Vv = pUTZ
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Vaschy-Buckingham Theorem (7r-Theorem)

Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime al Anal

numbers
f bal

Order of magnitude of the different terms
® (1) = p§i ~py = phU
@ (2) = pv.Vv

~ U2
~Pad
@ 3)=Vp~ 2P

p
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principa mensionless numbers
Dimensional Ana f bala equatio

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

@ (2) = pv.Vv = por
@ 3)=Vp~ 2P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
V.rr Hd%
Dun VA N ET METIERS
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensior
Dimensional Anal

Order of magnitude of the different terms
] (l)ﬁp%zp%:pﬁ)U

(2) = pv.Vv = pUTZ

(3)=Vp~ 2P

(4)

(5)

= pg ~ pg
5) = V.7 = uVv + £V (V.v) (for a constant viscosity Newtonian fluid)

V.rr Hd%

Comparison

DGN e ETETERS
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensior
Dimensional Anal

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

V.rr Hd%

Comparison

1>
Q‘Q,\,

Y (2) _ pv.Vv ~

) V.

ER
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

V.rr Hd%

Comparison

1>
Q‘Q,\,

Y (2) _ pv.Vv ~

®) v.T

& _ pUd Reynolds number Re = Inertial forces

= " Viscous forces

ER
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimension
Dime

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

~ U2
@ (2) = pv.Vv = por
@ 3)=Vpw~ 2P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
V.rr ud%
Comparison
v2 .
° % = LWV pﬂﬁ = Puﬂ Reynolds number Re = {nertial forces
2
2
o@_)pv,VVNPUT_LQ
@ g rg &d
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principa mensionless numbers
Dimensional Ana f bala equatio

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

~ U2
@ (2) = pv.Vv = por
@ 3)=Vpr~ £
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
V.rr Hd%
Comparison
2
2 . P ud — Inertial f
o % — pézv ~ uﬁ — PT Reynolds number Re = {Ztatorces
dZ
2
o () _y PV-VV pUT = v 2 Inertial forces
@) g g ad Froude number Fr° = Gravity forces
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principa mensionless numbers
Dimensional Ana f bala equatio

Order of magnitude of the different terms

] (l)ﬁp%zp%:pﬁ)U

2
@ (2)= pv.Vvrpl
@ 3)=Vp~ 2P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
~ Y
V.rr bz
Comparison
P Inertial f
2 . e _ Inert
@ B =Yy ld =2l Reynolds number Re = [nertial forces
rg
@) oL
2 VY P _ U .
O G R w Froude number Fr? = ferial forces
o W _ p5 _ piU _ id
@ — vV T 2 T U
d
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensionless numb;
Dir Anal f bal quations

Order of magnitude of the different terms

] (1):>p%zp%:pﬁ)U

~ U2
@ (2) = pv.Vv = por
@ 3)=Vp~ 2P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
V.rr Hd%
Comparison
_ Inertial f

o B - = el Reynolds number Re = [nertial forces
o @ — Lﬁ 2 Inertial forces

@) 2d Froude number Fr- = Cravity forces
) _ e . .

@ U Strouhal number St — Non-stationary acceleration

Convective acceleration
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensionless numb;
Dir Anal f bal quations

Order of magnitude of the different terms

] (1):>p%zp%:pﬁ)U

2
@ (2)= pv.Vvrpl
@ 3)=Vp~ 2P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
~ Y
V.rr bz
Comparison
° % = Puﬂ Reynolds number Re = {nertial forces
() T _ V2 .
° W =4 Froude number Fr? = ferial forces
° % = fOTJd Non-stati lerati
on-stationary acceleration
@ Strouhal number St = Convective zcceleratiun
Ap
o 8- Yo d _ Lo
(@) pv.Vv pUT pU
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Vaschy-Buckingham Theorem (7r-Theorem)
Dimensional Analysis Dimensional Analysis of balance equations

Principal dimensionless numb;
Dir Anal f bal quations

Order of magnitude of the different terms

] (1):>p%zp%:pﬁ)U

~ U2
@ (2) = pv.Vv = por
~ A
@ 3)=Vpxr P
@ (4) = pg =~ pg
@ (5) = V.r =uVv + £V (V.v) (for a constant viscosity Newtonian fluid)
~ U
V.rr hz
Comparison
2 Ud Inertial f
® % =2 Reynolds number Re = {jeroa forces
v 2
o @ pv-Vv o P g _ U 2 Inertial fi
@ ad Froude number Fr® = geliaLores
° % - fon Strouhal ber St — Non-stationary acceleration
rouhal number ~  Convective acceleration
A
o ®) = _Vp_ [~ lp = Ap Streamwise pressure variation
@ = . PUT2 U2 Euler number Eu = > eemmee Smeon

for incompressible pipe/channel flows
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Dimensional Analysis

Principal dimensionless numbers
Dimensional Analysis of balance equations

Number Definition Meaning

_ pUd Inertial forces
Reynolds Re = m Viscous forces

Froude Fr = m% free surface flow
Mach

flow velocity compressible flow
Strouhal

sound velocity
Weber We

Ql ‘

RN
I
2|l

>
c <
N
Q

Non-stationary acceleration -
Convective acceleration non-stationary flow

___Inertia
surface tension two-phase flow

_ Inertial forces due to rotation ;
Taylor Ta = 5~ B rotating flows

3
_ gBVTd Buoyancy forces !
Grashof Gr = &= et Torees natural convection
& i iffusi .
Prandtl Pr=2% = # % fluid property, for heated flow
% fluid property, for mass transfer flow

14
D

hi Convective heat transfer i

k Conductive heat transfer forced convection flow

q

Q.
™)

Q.
EN

Schmidt Sc =

Nusselt Nu =

Dgn
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y-Buck 1 Theorem (
Dimensional Analysis f bal

Principal dimensionless numbers
Dimensional Analysis of balance equations
Let us consider a Newtonian incompressible fluid with reference parameters: to, lo, Vo, Po, Po, Mo

8o for, respectively time, length, velocity, density, pressure, viscosity and gravity scales.

Reduced variables:

_ t _ x _ Yy _ z
Le=q X =7 Ve =1 .2 =
— v —» _ &
Vi = v5 0 Px = 50 0 Bx =
Navier-Stokes equations:
V=0

ov 5
P aJrv.Vv =—=Vp+uViv+pg

(2)
Operators:
_1 ) o 2\ _ 1
V=1 (s tergl tel) = V.
2 _ 1 ( 8?2 92 2\ _ 12
Vi=z <faxg tortoz)=2Vs
Dyn

VA ET METIERS
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Dimensional Analysis

Principal dimensionless numbers
Dimensional Analysis of balance equations

(1) = (‘,%’) Vive =0= Vv, =0 Mass
Povo OV | PoYs Po oo |, 2
(2) = Lo Gy + “2va . Vvu = =52V p, + £ 1, Vive + pogogx
I
fol Ovs _ P 8ol
(%:) +v.. V. V*f—(p;/ >V*P*+(m) N*v V*+<%> 8
2
H : . — folo _ _Po — Povolo — Y%
Dimensionless numbers appear: St = v Eu = Pl Re = e , Fr = v
StOEE 4 v, Vavu = —EUVapu + 7/t V2Vi + £8a J Momentum

— 2 .
If we choose p, = poV, as pressure reference:

StOE 4 v, Vavu = —Vaupu + &1 ViV + Eg.
For a stationary flow:

Vi Vave = —=V,pe + A paV2v, + Eg.
Dun V4 bt
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am Theorem (7r-Theoremn
Dimensional Analysis al Ana f balance equatio

Principal dimensionless numbers
Dimensional Analysis of balance equations

For compressible flows, if fluid is assimilated to an ideal gas:

Mass
St385 4 Vupuve =0

Momentum

Stp* g‘;: + paVi. Vv, = _ﬁv*P* + R%.; [H*VEV* aF “?*V* (V*AV*)] aF %P*g*

Energy

_ 2
pucoe [T 4 VuT. ] = 2dn Ve (V. Ta) = S2p,Vevs + (v = 1) 60

where: ¢, is the viscous dissipation function, T is the temperature and =y is the heat capacity ratio.
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Similarity

e Similarity
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Similarity

"I found that | was fitted for nothing so well as the study of Truth, as
having a nimble mind and versatile enough to catch the resemblance of
things (which is the chief point), and at the same time steady enough to
fix and distinguish their subtle differences.”

Francis Bacon (1561-1628)

Relationship between the model and the prototype in testing?
@ Geometric similarity
@ Kinematic similarity = Complete similitude

© Dynamic similarity
DN e s
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Model geometry

Similarity Similarity conditions

Geometric similarity

Two geometrical objects are called similar if they both have the same shape:
all linear length scales of one protoype are a fixed ratio of all corresponding length scales of the

model and all angles are preserved.

<AE) -

o <> o

—

——T b
Prototype Model
tmef=af=t

But, in some cases it is not possible to have a complete geometric similarity!!

DGN e ETETERS
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Model geometry

Similarity

= hydraulic models are sometimes distorted with different scale ratios in horizontal and vertical
directions.

Watch out! Scale decrease may create new phenomenal

(for example, capillarity, surface tension...)

/ ET METIERS
aneiio y A it
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Similarity Similarity conditions

Kinematic similarity

7

Prototype Model
This similarity requires that the length and time scales be similar between the model and the
prototype implying that velocities at corresponding points be similar.

= Then fluid streamlines are similar

YA _va YB _ %

upg uz’' ug up ' T
Remark: Kinematic similarity includes geometric similarity.

DGN e ETETERS
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Similarity i y conditions

Dynamic similarity

FA,
1;_, FA,

Prototype Model

Two geometrically similar objects are said to be dynamically similar if the forces acting at
corresponding locations on the two objects are everywhere in the same ratio.

FA, _ Fay, FBy, __ Fby
FA, — Fa,' FB, — Fby' """

Of the three similarities, the dynamic similarity is the most restrictive.

To achieve dynamic similarity, all dimensionless numbers relevant to the flow must be preserved
between the model and the protoype:

(1) mode = (1 )pratatype' (72) moger = (WZ)prototype’ s

DGN e ETETERS
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Mode etry

Similarity Similarity conditions

Similarity conditions for incompressible flows

Dimensionless numbers: Reynolds, Froude

@ When a flow has no free surface (for example: internal pipe flows), gravity forces may be
included to pressure forces in movement equations as the hydraulic charge: p, = p + pgz
(in replacement of the pressure). Then it is no more necessary to use Froude number in
similarity conditions.

@ When a flow has a free surface with a changing position, we can not include gravity forces
in the hydraulic charge, Reynolds and Froude numbers have also to be preserved to
achieve dynamic similarity.

@ If surface tension intervenes in studied phenomena, then Weber number must be preserved
with Reynolds and Froude numbers.

DGN e ETETERS
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Mode etry

Similarity Similarity conditions

Similarity conditions for compressible flows

Dimensionless numbers: Reynolds, Mach

@ Gravity forces can be neglected so Froude number is not necessary to achieve dynamic
similarity (in the case of great scale atmospheric flows, gravity forces must be taken into
account).

@ In practice, it is difficult to preserved Mach and Reynolds numbers for reasonable size of
models. So, when Mach number is small, its effects are theoretically calculated and we
choose only Reynolds number to conserve dynamic similarity.

@ On the other hand, for a great Mach number, compressibility effects are preponderant then
Mach number must be conserved and Reynolds number must have a realistic value. As
the model size reduction decreases Reynolds number, we have to perform experiments with
a higher pressure or a weaker temperature in order to have a valid Reynolds number to
operate: using pressurized or cryogenic wind tunnel is necessary in transsonic flow studies.

DGN e ETETERS
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Conlusion

@ Conlusion
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Conlusion

Dimensional analysis is important to:
@ Find physical laws
e Simplify problems
@ Detect relevant parameters
@ Build a model
In order to achieve this analysis, it is important to master:
@ Vaschy-Buckingham theorem (7-Theorem)
@ Know dimensionless numbers

@ Know similarity conditions rules

DGN e ETETERS
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