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1 Flow rate measurement with inclined venturi

1. The studied flow is stationary and presents no viscous forces. It is then possible to used the
Bernoulli’s theorem. If we consider a streamline between sections A0 and A1, we have:

p0 + ρgz0 + ρ
v20
2

= p1 + ρgz1 + ρ
v21
2

(1)

where p0, v0, p1 and v1 are pressures and velocities respectively in A0 and A1.
Since the flow is unidimensional in A0 and A1, velocities v0 and v1 are uniform on each sections.

2. Hydrostatics laws are applied in the U-tube and its connections, because pressure tappings
are perpendicular to the flow (figure 1).

We obtain:

pref = p0 + ρg (z0 − z2)
pref = p1 + ρg (z − 1− z3) + ρmg (z3 − z2)

where pref is the pressure in the line indicated as the pressures reference.

3. With a combination of these two equations, we obtain:

p0 − p1 = ρg (z1 − z3 − z0 + z2) + ρmg (z3 − z2)

(p0 + ρgz0)− (p1 + ρgz1) = (ρm − ρ) g∆h (2)

4. In order to obtain a relation between velocities in section A0 and A1, we substitute the equa-
tion (2) in the equation (2):

v21 − v20 = 2
ρm − ρ
ρ

g∆h (3)
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Figure 1: Pressures reference

The mass conservation (or flow rate conservation because the flow is incompressible) between
sections A0 and A1 is then :

ṁ

ρ
= qv =

πD02

4
v0 =

πD12

4
v1 (4)

Using the equation (4) and the equation (3), we can determine the volumetric flow rate:

qv = π
4

(
1

1

D4
1

− 1

D4
0

)1/2 (
2ρm−ρ

ρ g∆h
)1/2

We can see that this relation does not depend on the venturi inclination.

5. The value of the volumetric flow rate is then: qv = 0.0156 m3.s−1

2 Couette viscometer

1. The height of oil h = 20 cm is large compared to the distance δ = 1 mm between the two
cylinders: δ

h � 1.
We can then neglect the edge effects and especially the flow in the bottom of the viscometer.The

hydrostatic pressure gradient induced by the gravity force produces no vertical flow, and the tan-
gential pressure gradient is zero. So we can consider that the problem study a flow between two
cylinders with infinite heights, where the velocity v has no vertical component and does not depend
on the coordinate z. In a rotating system we can expressed the velocity ~v:
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~v = ur (r, θ) ~er + uθ (r, θ) ~eθ

The flow in a stationary regime is established. Then it does not depend on θ. The distance
between the two walls a = R2−R1 = 0.02 cm is small compared to the average radius of curvature
R = (R1 +R2) /2 = 5.01 cm. We have: a/R� 1, so the curvature effects can be neglegted.

As the centrifugal force is still low, ur = 0 and only the rotation of the external cylinder induces
a flow in blocks parallel to the plane Oxy by driving the fluid layers:

~v = uθ (r) ~eθ

As a/R � 1, we can use y = r − R1 and the flow between the two cylinders is considered as a
unidimensional flow between two infinite planes separated by a = 0.02 cm. One of these planes is
motionless and the other one has a motion with a uniform velocity V (figure 2

Figure 2: The studied flow of oil between the two cylinders walls

The external cylinder rotates at N = 90 rpm. The movable plane has a velocity V :

V = ωR2 = 2πN
60 R2 = 0.473 m.s−1

2. The velocity field is: u = u (y). The acceleration d~v
dt = ∂~v

∂t + ~v.~∇~v is then zero. Without
pressure gradient and volume force in the direction of the x axis, the projection of the Navier-Stokes
equations can give an expression for the tangential stress τxy:

∂τxy
∂y = 0

As the fluid is newtonian: τxy = µ∂u/∂y. Then, we obtain: d2u
dy2

= 0.
This equation can be integrated in the shape: u = c1y + c2. The velocity profile is then linear

between the two walls (figure 2).
The attached condition of the fluid to the fixed wall u (0) = 0 and to the movable wall u (a) = V

allows to determine the exact equation:

u (y) = V
a y

3. The stress τ0 applied by the fluid fluid on the side wall of the inner cylinder is given by:

τ0 = τxy (y = 0) = µ
(
∂u
∂y

)
y=0

= µVa

4. With the rotational symmetry, the resultant of the forces applied by the oil in motion on
the inner cylinder is zero, but the fluid applied a torque C on the torque cable. The force applied
by the flow on the fixed plane is given by the resultant of the wall stress F = τ0S1. In order to
calculate the torque applied on the torque cable, we determine:
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C = FR1 = τ0S1R1 = µVa S1R1

where S1 = 2πR1h is the external surface of the inner cylinder immersed in the fluid.

5. As the flow is at rest for distances r < R1, we can finally determine the viscosity µ:

µ = Ca
R1S1V

Calculation of the viscosity for given data induces: µ = 1.48kg.m−1.s−1

3 Falling drop measurement

1. Forces acting on the drop:

• its apparent weight: P = (ρd − ρg)Vg, directed downward

• Surface tension force: T = 2πrγ, directed upward

• overpressure: ∆p = γ
(
1
r −

1
R

)
, the force FL = ∆pπr2 is directed downward.

2.

(ρd − ρg) vg − 2πrγ + γ
(
1
r −

1
R

)
πr2 = 0

(ρd − ρg) vg = πrγ
(
1 + r

R

)
Then, we have: γ =

Vg
πr

(ρd−ρg)
1+ r

R

3. As R >> r, we can assume that r
R is negligible, and the radius r is also the external radius of

the capillary tube. Then:

(ρd − ρg)Vg = πaγ

We know that: m = ρdV , so γ =
mg
ρd

(ρd−ρg)
πa

γ =
mg

(
1− ρg

ρd

)
πa

4. Surrounding gas is air so: ρg << ρd and
ρg
ρd

is negligible.

We have then: γ = mg
πa

ρoil = dρwater = 977.06 kg.m−3

with d = 0.98 for T = 22◦ C and ρwater = 997 kg.m−3

As we have a = 0.8 mm and Mtotal = 1.094 g, we have:

m = Mtotal
200 = 0.00547 g

Then: V = m
ρoil

= 6 10−9 m3 = 0.006 mL
We can calculate: a

V 1/3 = 0.44026, so f = 1.3258

We obtain: γoil = mg
πfa = 16.11 10−3 N.m−1
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