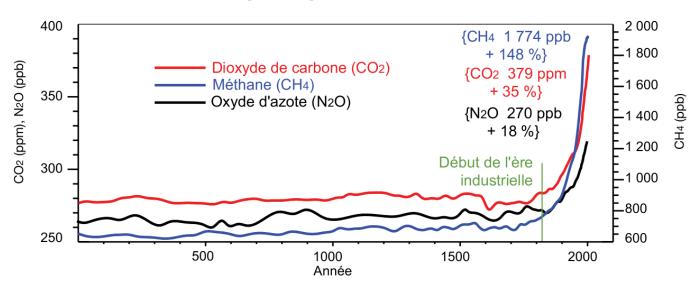

Perspectives énergétiques à long terme

F. Ravelet 2012

Nécessité d'anticiper deux problèmes :

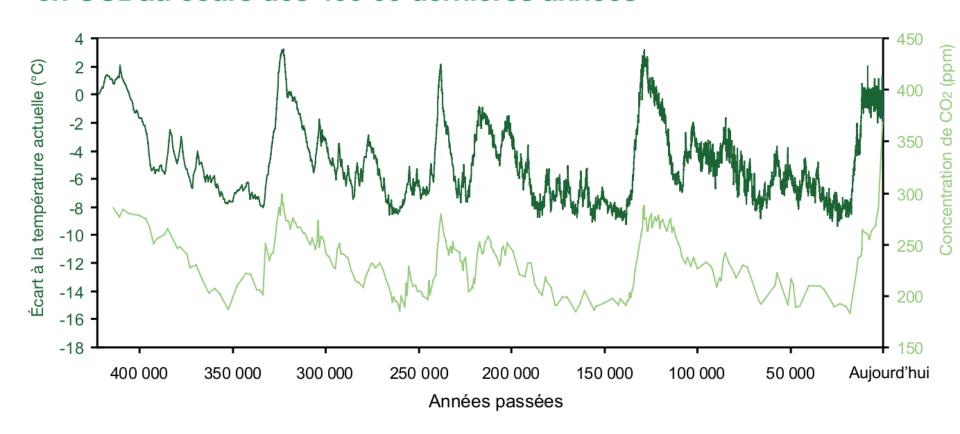
L'épuisement des ressources

L'impact sur le climat


Nécessité d'anticiper deux problèmes:

L'épuisement des ressources

L'impact sur le climat


Concentrations atmosphériques de GES de l'an 0 à 2005

Nécessité d'anticiper deux problèmes :

- L'épuisement des ressources
- L'impact sur le climat

Corrélation entre température et concentration atmosphérique en CO₂ au cours des 400 00 dernières années

Des solutions?

- Méthodes de projection
- Sur quels leviers agir ?
- De multiples scenarii
- 100% renouvelable ?
- Pourra-t-on se passer de nucléaire ?

- Méthodes de projection
 - Prévision basée sur extrapolation
 - Taux de croissance (PIB, démographie)

IEA: référence « scénario tendanciel »

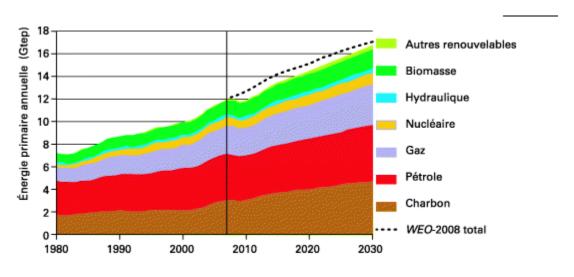


Figure 7 - Scénarios de croissance de la consommation d'énergie primaire WEO 2009 et 2008 (doc. IEA)

- Sur quels leviers agir ?
- De multiples scenarii
- 100% renouvelable?
- Pourra-t-on se passer de nucléaire ?

Méthodes de projection

IEA: référence « scénario tendanciel » 2050/2007

Emission CO₂ x 2

Energie Primaire +87%

Pétrole + 57% (synthèse + non conv.); Charbon + 138%; Gaz +85%

Electricité: 2/3 fossile 22% renouvelables

Capture Stockage Carbone (CSC) non déployé

Transport : 90% produits pétroliers

Investissement total 270 000 milliards \$

Pays non OCDE: 90% de l'augmentation, ¾ CO₂

- Sur quels leviers agir ?
- De multiples scenarii
- 100% renouvelable?
- Pourra-t-on se passer de nucléaire ?

Source : Scénarios et stratégies à l'horizon 2050, AIE

Messages des modèles

Ce qui ressort [...] rappelle également que, depuis [...] 2006, le monde continue de se diriger dans la mauvaise direction, cela à un rythme accéléré. De 1990 à 2000, les émissions mondiales de CO2 ont augmenté [...] de 1,1 % par an. [De 2000 à 2007] le taux de croissance annuel [est de] 3,0 %. Deux éléments [...] : la demande croissante d'énergie dans les économies ayant le charbon comme base de leur consommation ; et l'augmentation de la production d'électricité à partir du charbon à la suite de la hausse des prix du pétrole et du gaz. [...]

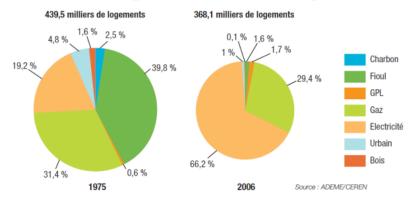
Le message [...] : les tendances actuelles [...] ne sont de toute évidence pas viables au regard de l'environnement, de la sécurité énergétique et du développement économique. La dépendance persistante vis-à-vis des combustibles fossiles [...] continue de faire augmenter aussi bien les émissions de CO2 que les prix des combustibles fossiles. Par exemple, on prévoit que le prix du pétrole atteindra 121 USD par baril (aux prix de 2008) à l'horizon 2050.

- Méthodes de projection
- Sur quels leviers agir ?

Sobriété

◆ Exemple bâtiment (40% En. finale) : 1973, 365 kWh/m²/an (moyenne)

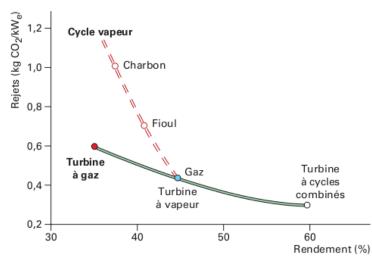
2005, 215 kWh/m²/an (moyenne) RT 2012 : 50kWh/m²/an (neuf, eau chaude sanitaire incl.)


◆ Transports : urbanisme, transport en commun, fin de la voiture en ville.

- Efficacité
- → Sources renouvelables, progrès technologiques
 - De multiples scenarii
 - 100% renouvelable?
 - Pourra-t-on se passer de nucléaire ?

- Méthodes de projection
- Sur quels leviers agir ?

- Sobriété
- Efficacité
 - Chauffage électrique : une aberration ?
 - B9 Evolution des parts de marché des énergies dans les logements neufs (milliers de logements)


- pointe hivernale
- rendement conversion?

- Exemple variateur sur moteur de pompe
- → Sources renouvelables, progrès technologiques
 - De multiples scenarii
 - 100% renouvelable?
 - Pourra-t-on se passer de nucléaire ?

- Méthodes de projection
- Sur quels leviers agir ?

- Sobriété
- Efficacité
 - ◆ Chauffage électrique : une aberration ?
 - ◆ Exemple variateur sur moteur de pompe
 - Amélioration des rendements de conversion
 - Cogénération

- → Sources renouvelables, progrès technologiques
 - De multiples scenarii
 - 100% renouvelable?
 - Pourra-t-on se passer de nucléaire ?

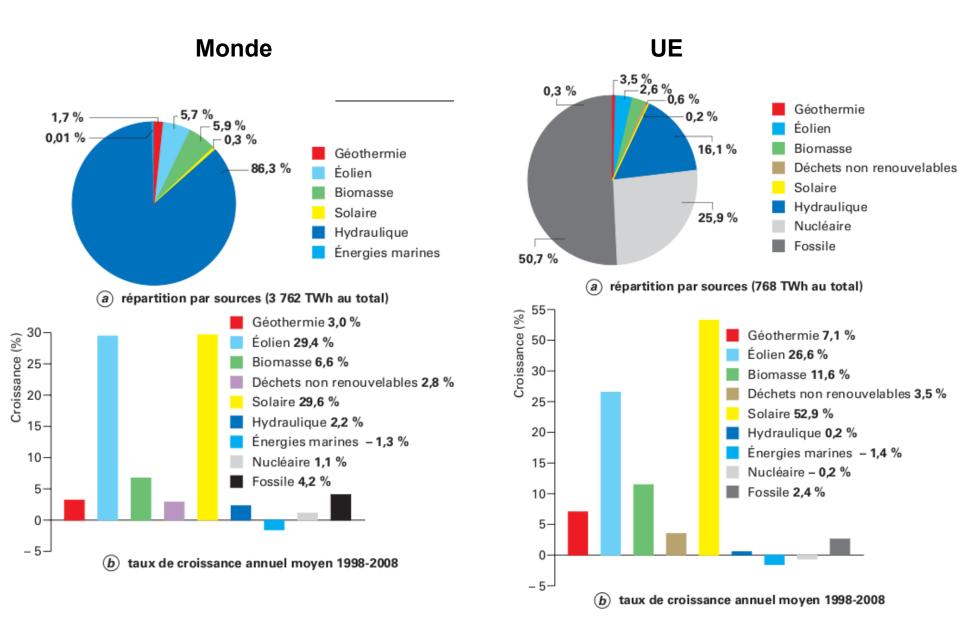
- Méthodes de projection
- Sur quels leviers agir ?

- Sobriété
- Efficacité
- Sources renouvelables, progrès technologiques
 - Développement énergies renouvelables
 - Capture et Stockage CO₂
 - Stockage de l'électricité
 - Véhicule électrique
 - Réseaux électriques intelligents
 - Méthanation
 - Faire de chaque bâtiment son propre producteur
 - **...**

- → Déploiement à grande échelle ?
- De multiples scenarii
- 100% renouvelable ?
- Pourra-t-on se passer de nucléaire ?

- **◆ Union européenne :** objectif 2020 = Améliorer de 20% l'efficacité énergétique
 - Porter à 20% la part des énergies renouvelables
 - Réduire de 20% les émissions de Gaz à Effet de Serre

par rapport à 1990


Directive 31/03/2009 : tout bâtiment construit après 2019 producteur de son

énergie.

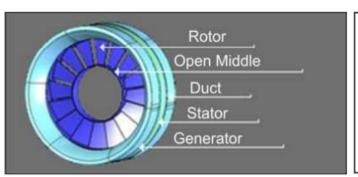
→ France : pour répondre à 2020, s'engage à:

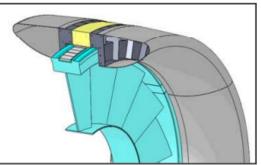
		2020 (Mtep)	2006 (Mtep)	
Chaleur	Biomasse	15	8,8	
	Géothermie	2,3	0,4	
	Solaire	0,9	0	
	Déchets	0,9	0,4	
	Biogaz	0,6	0	
	Total	19,7	9,7	
Electricité	Hydraulique	5,4	5,2	
	Éolienne terrestre	3,6	0,2	
	Éolienne marine	1,4	0	
	Biomasse	1,4	0,2	
	Photovoltaïque	0,5	0	
	Total	12,5	5,6	

Développement énergies renouvelables

Développement de l'éolien offshore : appel à projet 600 turbines, 3.000 mégawatts, cinq zones situées de Saint Nazaire au Tréport.

World Trade Center de Bahreïn: 30 m, 1000 MWh/an soit 15% de la

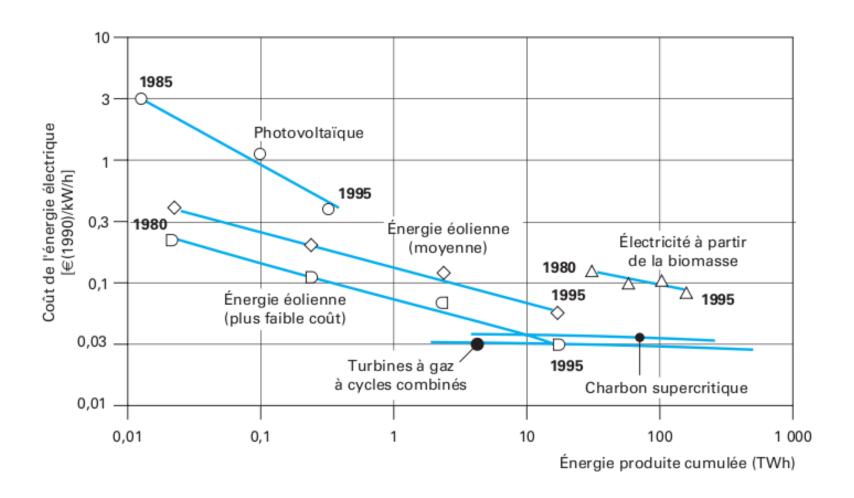

consommation



Développement énergies marines : Shiwha lake, Corée, inaugurée 2011.

3.b Les technologies hydroliennes : OpenHydro (1)

- Prototype de 250 kW (diamètre 6 m) testé à l'EMEC depuis fin 2007 :
 - Montage sur 2 pieux pour essais/réglages.
 - Génératrice périphérique à aimant permanent.
 - Connecté au réseau en 2008
- Essai de la procédure d'installation de la structure gravitaire à l'EMEC en 2008
 - Catamaran construit pour l'installation (base gravitaire)
- Développement en cours d'un prototype (0.5-1.0 MW)
 - Turbine déployée au Canada (diamètre 10 m)



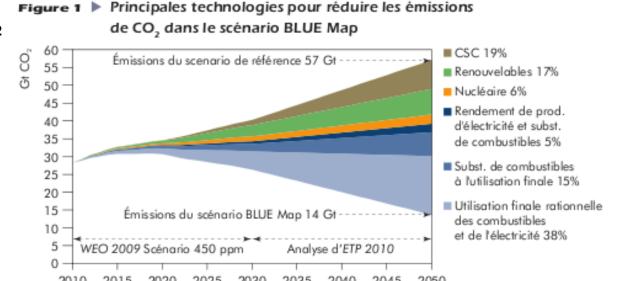
Compétitivité des énergies renouvelables

→ Déploiement à grande échelle ?

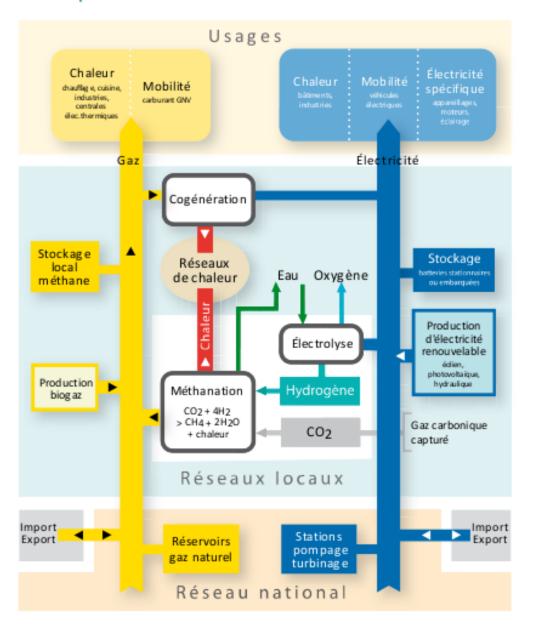
Tableau 5 - Récapitulatif des puissances installées, des évolutions, des coûts d'investissement, de fonctionnement et de production (données de 2007 à 2009)

					ac proud	011011 (01011			2000,		
Source énergie	Gaz naturel	Charbon	Nucléaire	Hydrau- lique	Petites centrales hydroélec. (PCH)	Solaire Thermody- na mique	Photo- voltaique en 2009	Éolien en 2009	Houle	Marée, cou- rants marins	Géo- thermique
P totale installée monde 2007	1 090 GW	1 320 GW	372 GW	889 GW	70 GW	400 MW	21 GW	158 GW	Proto- types qq MW	500 MW	9 GW
Taux crois- sance annuel (pré vu ou observé)	7 % (1998 à 2008)	3 % (1998 à 2008)	1,1 % (1998 à 2008)	2,2 % (1998 à 2008)	5,5 % (2001 à 2009)	qq GW planifiés	30 % (1998 à 2008) (44 % 2009/ 2008)	29 % (1998 à 2008) (31 % 2009/ 2008)	?	?	3%
Facteur	0,43	0,71	0,83	0,41	0,47		?	0,22	-		0,68
charge monde (possi- ble)	(0,9)	(0,9)	(0,9)	(0,2 à 0,9)	(0,3 à 0,9)	(0,1 à 0,2)	(0,1 à 0,2)	(0,2 à 0,35)	(0,1 à 0,3)	0,25 (Rance)	
Durée de vie (an)	20	20	40 à 60	30 à 50	20 à 50	20	20 à 30	20	?	20 à 50	20 à 50 ans
Puis- sances unitaires généra- teurs	1 à 500 MW	100 à 1 000 MW	500 à 1 500 MW	10 à 1 000 MW	1 kW à 10 MW	5 à 50 MW	qq 100 W à qq MW	700 kW à 6 MW	100 kW à 10 MW	qq 100 kW à qq 10 MW	1 à 100 MW
Coût investis- sement (€/W)	0,5 à 0,6 (oycle combiné)	1,1 (pulvė- risė ou lit flui disė)	1,7 à 2	2 à 4 selon puis- sance et site	0,6 à 4 selon puissance et site	2,5	6 à 3,5 selon puis- sance (toit ou usine) et zone géogra- phique	1 à 2 (offs- hore)	?	2,2 (usines marée- motri- ces)	1,7 à 2,2 selon forage
Coût combus- tible ou/et mainte- nance (c€/kWh)	6 _{cb} + 0,2 _{mt}	3 _{cb} + 0,3 _{mt}	1 _{cb} + 1 _{mt}	0,7 _{mt}	?	?	0,5 à 2 _{mt}	0,1 à 0,2 _{mt}	?	?	?
Évolu- tion coût	→ (/> selon prix gaz et CO ₂)	→ (,> selon prix charbon et CO ₂)	→ (> selon coût déchets et décons- truction)	\rightarrow	`	`	>>	`	`	Marée : → Cou- rants marins :	`

Développement de technologies nécessaires aux énergies renouvelables

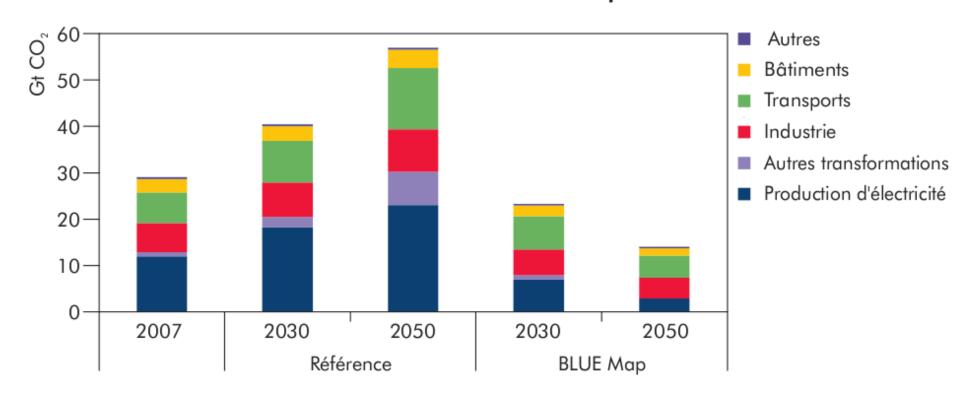

- Réseaux électriques intelligents
- Stockage de l'électricité : STEP (station de transfert d'énergie par pompageturbinage, rendement 82%, 6000MW, 7 TWh/an)

Projet pilote photovoltaïque Sacramento Municipal Utility District (batteries Li-ion 5kW, 9kWh)


Stockage inertiel (métro de Rennes 230 MWh/an, 11 jours)

Captage et Stockage de CO₂

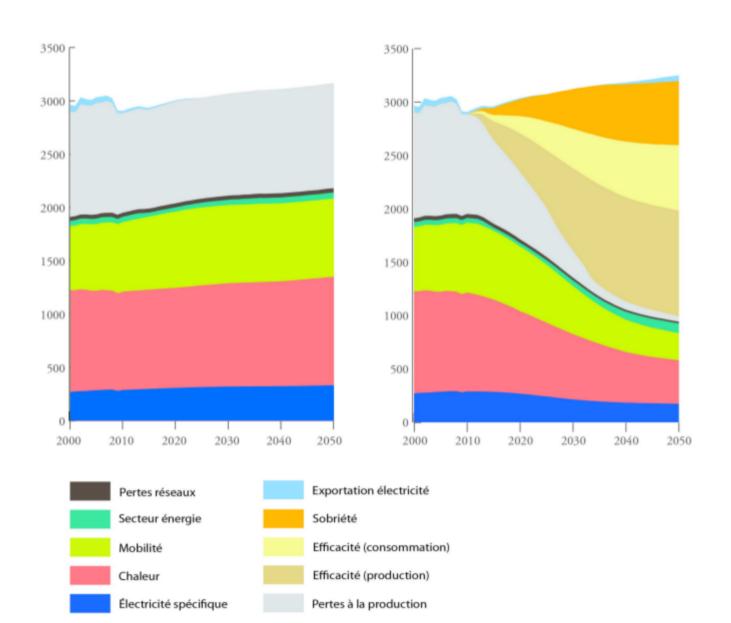
dissolvants aminés, type monoéthanolamine (2-aminoéthanol)


Complémentarité entre réseaux : la « méthanation »

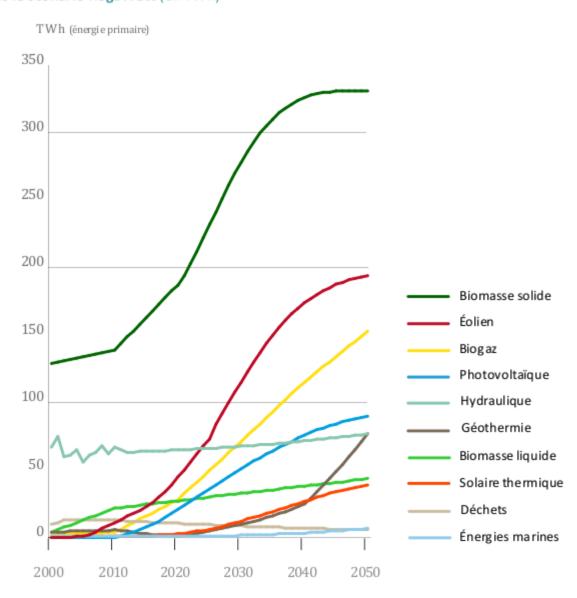
- Méthodes de projection
- Sur quels leviers agir ?
- De multiples scenarii
- 100% renouvelable ?
- Pourra-t-on se passer de nucléaire ?

	IEA: référence « scénario tendanciel » 2050/2007	IEA: « scénario BLUE Map » 2050/2007
Emission CO ₂	x 2	divisée par 2
Energie Primaire	+87%	+32%
Pétrole ; Charbon ; Gaz	+57%; +138%; +85%	-4% ; -36% ; -12%
Electricité :	2/3 fossile 22% renouvelables	17% fossile 48% renouvelables 24% nucléaire
Capture Stockage Carbone (CSC)	non déployé	déployé
Transport	90% produits pétroliers	80% hybride
Investissement total	270 000 milliards \$	316 000 milliards \$ -112 000 économies

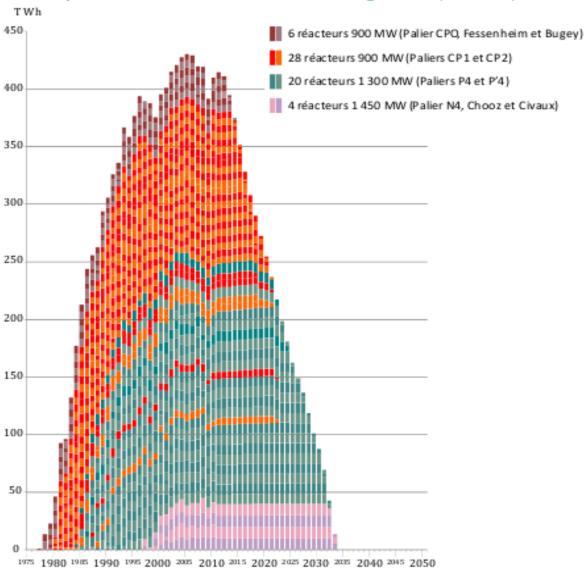
Figure 3 Émissions mondiales de CO₂ dans les scénarios de référence et BLUE Map

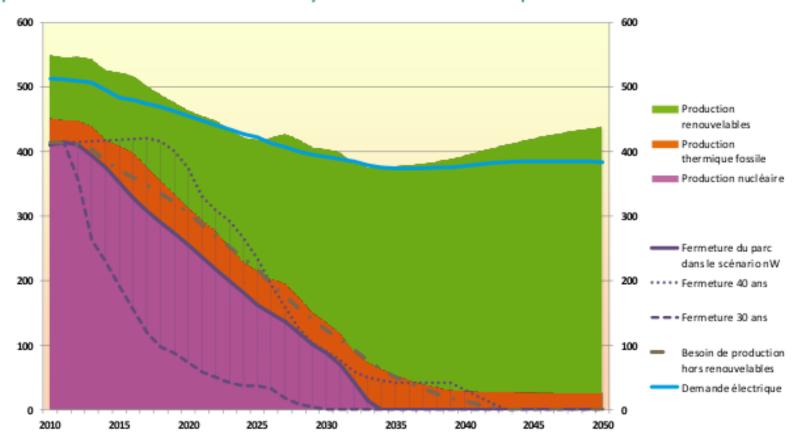


BLUE Map: 50% d'électricité renouvelable, 25% nucléaire


Source : Scénarios et stratégies à l'horizon 2050, AIE

- [...] il est possible de réduire de moitié les émissions mondiales de CO2 liées à l'énergie d'ici à 2050. [...] Dans ce scénario le prix du pétrole n'est que de 70 USD par baril (aux prix de 2008) à l'horizon 2050.
- Un ensemble de technologies à faible teneur en carbone, [...] sera indispensable pour réduire de moitié les émissions de CO2 à l'horizon 2050. [...]
- [...] les combustibles fossiles resteront un élément important des approvisionnements énergétiques mondiaux dans un avenir prévisible.
- Les améliorations en termes d'efficacité énergétique, [...] offrent les plus grandes possibilités de réduire les émissions de CO2 [d'ici] 2050. [...] la première priorité à court terme.
- La décarbonisation du secteur de l'électricité, deuxième en importance parmi les solutions permettant de réduire les émissions, est cruciale : elle passera nécessairement par une progression spectaculaire des parts des énergies renouvelables et du nucléaire, ainsi que par
- l'équipement des centrales électriques aux combustibles fossiles de moyens de CSC.
- Des approvisionnements électriques décarbonisés offrent des possibilités considérables de
- réduire les émissions dans les secteurs d'utilisation finale par l'électrification (par exemple, en
- remplaçant les véhicules équipés de moteurs à combustion interne par des véhicules électriques et hybrides rechargeables, ou le chauffage aux combustibles fossiles par des pompes à chaleur à haut rendement).
- De nouvelles technologies à faible teneur en carbone seront indispensables pour que les réductions d'émission se poursuivent après 2030, surtout dans les secteurs d'utilisation finale tels que les transports, l'industrie et les bâtiments.


■ Evolution comparée des consommations énergétiques finales par usages entre le scénario tendanciel et le scénario négaWatt (en TWh)


■ Développement des différentes filières renouvelables dans le scénario négaWatt (en TWh)

■ Optimisation des contraintes sur le rythme de fermeture du parc de réacteurs nucléaires

French Scenarios	Commissioned by	Main characteristics
négaWatt	Created by the NGO "négaWatt" that assembles 150 energy experts in 2006.	Nuclear phase out by 2030 Taking into account an energy consumption reduction through increasing energy sufficiency
négaTEP	Created by the NGO « Sauvons le climat ² » in 2007.* Different pro-nuclear associations support the scenario. ³	 Annual energy consumption reduction: -1% Decarbonization of the energy mix (fossil fuels: -62% in 2050 in comparison to 2000) Renewable energy development: 37% of the energy demand in 2050 Maintain the share of nuclear energy for electricity production

German scenarios	Commissioned by	Main characteristics
Weiterentwicklung der Ausbaustrategie Erneuer- bare Energien: Leitstudie- Effizienzszenario (in the following: DLR, Leadstudy, 2008 - Effizienzszenario) Energiezukunft 2050 - Szenario 3	Commissioned by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and developed by Dr. Nitsch and the German Aerospace Center (DLR) in 2008	 -CO₂ emissions reduction by 85% in 2050 in comparison to 1990. - Nuclear phaseout by 2022/23. - CO₂ emissions reductions is reached by: - increased share of renewable energies - a great shift in the traffic sector to more biofuels or electricity - the possibility of using CCS after 2020.
Energiezukunft 2050 - Szenario 3	Commissioned by EnBW, E.ON Energie, RWE Power and Vattenfall Europe and developed by Forschungsstelle Energiewirtschaft e.V. (FfE) in 2009	 - 70% reduction of CO₂ emissions in 2050 in comparison to 1990. - Extension of life duration to 60 years, construction of new nuclear power plants from 2040 on. - CO₂ emissions reductions are reached by: - an increase of energy efficiency - behavior change - a reduction of final energy demand - an increased share of renewable energies in the primary energy supply - decrease to the heat demand of 2015 in 2050 - the usage of combined heat and power