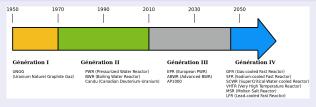
Centrales nucléaires de production d'électricité. 2- Technologie des REP


F. Ravelet

Laboratoire d'Ingénierie des Fluides et Systèmes Energétiques - Arts et Metiers Institute of Technology

25 octobre 2022

- Filières envisageables
 - Modérateurs
 - Caloporteurs
 - EnrichissementFilières exploitées et en développement
- Présentation détaillée des réacteurs à eau sous pression

Rappels sur la notion de filière

Historique des générations de centrales nucléaires

- Filière : combinaison Combustible / Modérateur / Caloporteur
- Neutrons libérés lors d'une fission : neutrons rapides (E \simeq 2 MeV)
- Sections efficaces (probabilités de réaction) décroissent avec l'énergie des neutrons ⇒ Deux voies
 - Neutrons rapides et uranium fortement enrichi
 - Neutrons thermiques et uranium peu (ou pas) enrichi

Modérateurs

- Neutrons issus de fission : $E \simeq 1$ MeV, i.e. $v \simeq 13800$ km.s⁻¹
- Neutrons en équilibre thermique à 300^o C : $k_BT \simeq 0.05~{\rm eV}$, i.e. $v \simeq 3.1~{\rm km.s^{-1}}$
- Ralentissement par « chocs » successifs :

Noyau	Perte relative énergie / choc	Nbre chocs nécessaires
Hydrogène	0.636	19
Deutérium	0.710	26
Carbone	0.925	112
Béryllium	0.903	86
Oxygène	0.942	147
Zirconium	0.989	804
Uranium	0.996	2 086

Modérateur	Ralentissement	Capture	Coût	U naturel?
Eau (H ₂ O)	+++	+	+++	Non
Eau lourde (D ₂ O)	+++	+++	_a	OK
Graphite (C)	+	++	+	OK

Dans un réacteur à eau, durée de ralentissement $\simeq 4\times 10^{-5}~{\rm s} <<$ temps effectif de régénération des neutrons.

a. Présente en faible quantité dans l'eau et obtenue par distillation, hydrolyse ou procédé chimique, il faut environ 340 000 tonnes d'eau pour en extraire une tonne d'eau lourde

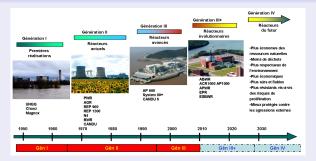
Caloporteurs

	Eau légère	Sodium liquide	Gaz sous pression
Température maximale (rendement)	(limitée par ébullition et corrosion)	••	•••
Transfert thermique (capacité calorifique et conductivité thermique)	••	•••	(hautes pressions, fort débit ⇒ haute puissance de soufflage)
réactions avec les neutrons	(absorption, forte modération \Rightarrow neutrons lents)	(faible absorption, faible modération ⇒ neutrons rapides possibles)	(ni absorption ni modération) ⇒ neutrons rapides possibles)
Problèmes d'ordre technologique (corrosion, étanchéité)	• (corrosive à haute température)	(pas de corrosion, faibles pressions)	• (problèmes d'étanchéité)
Transparence	•••	(opaque)	•••
Sûreté	● ● (Risque de vaporisation)	• (très réactif avec l'air, l'eau, le ciment)	(Risque de depressurisation)

Enrichissement de l'Uranium

Uranium naturel : 99.3% d' $\frac{238}{92}U$ et 0.7% d' $\frac{235}{92}U$ en masse. Enrichissement : augmentation de la teneur en $\frac{235}{92}U$

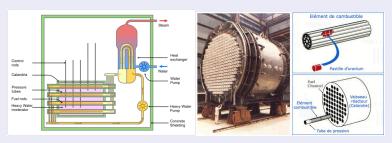
- Uranium légèrement enrichi (SEU) : 2%;
- Uranium faiblement enrichi (LEU): 3% à 5%;
- Uranium hautement enrichi (HEU): 20%, pour la propulsion navale;
- Uranium de qualité militaire : plus de 90%.


Procédés :

- O iffusion gazeuse. Première méthode déployée à échelle industrielle, énergivore, tend à disparaître ;
- Ocentrifugation. Réclame 50 fois moins d'énergie.

Pays	Production (MUTS/ans) 2013	2015	Prévision 2020
France	5.5	7	7.5
Germany-Netherlands-UK	14.2	14.4	14.9
USA	3.5	4.7	4.7
Russia	26	26.6	28.7
China	2.2	5.8	10.7
Total	51.6	58.6	66.7
Besoins (WNA reference sce- nario)	49.1	47.2	57.4

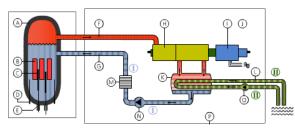
Evolution des capacités mondiales de production d'uranium enrichi (source World Nuclear Association)


Principales filières

Filières	Combustible	Modérateur	Caloporteur	En ma (2022)	arche	Constru (2022)	ction	Arrêtés (1950-2	
	•	•		GWe	#	GWe	#	GWe	#
UNGG, Magnox	Uranium naturel	Graphite	Gaz carbonique	0	0	0	0	7.2	37
HWGCR	Uranium naturel	Eau lourde	Gaz carbonique	0	0	0	0	0.2	5
CANDU	Uranium naturel	Eau lourde	Eau lourde	24.5	47	1.9	3	2.7	10
RBMK	Uranium enrichi (1.8%)	Graphite	Eau bouillante	7.4	11	0	0	8.9	13
AGR	Uranium enrichi (3%)	Graphite	Gaz carbonique	4.6	8	0	0	3.0	7
BWR	Uranium enrichi (3%)	Eau	Eau bouillante	61.8	61	2.6	2	30.6	52
PWR	Uranium enrichi (3%)	Eau	Eau liquide	293.7	307	54.2	50	43	65
FBR	Uranium/Plutonium ≥ 10%		Sodium liquide ou Plomb	1.4	2	1.9	4	1.9	8
Total				393.6	437	60.8	59	99.0	204

CANDU

Canada, Inde, Roumanie.



- Eau lourde : modérateur et Eau lourde sous pression dans tubes de force : caloporteur;
- Rechargement en marche possible.

Réacteurs à eau bouillante

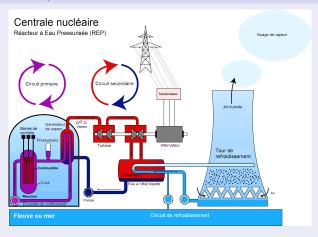
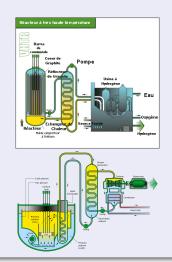

USA, Japon, Suède, Allemagne.

Schéma de fonctionnement d'un réacteur à eau bouillante

- Eau ordinaire : caloporteur et modérateur ;
- Pression 80 bars, ébullition dans le cœur;
- Détente directe. Meilleur rendement.

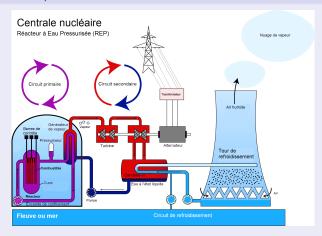
Réacteurs à eau sous pression


- Eau ordinaire : caloporteur et modérateur ;
- Maintenue liquide à 155 bars;
- Générateur de vapeur, circuit secondaire.

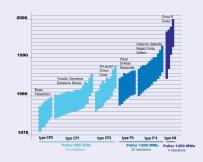
Génération IV

Forum international, 12 pays. 6 concepts retenus :

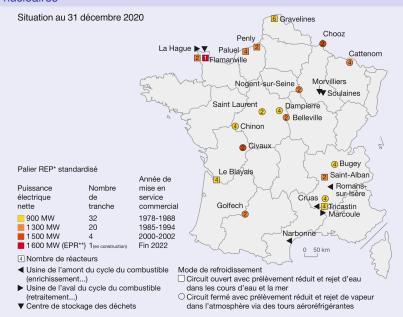
- Réacteur nucléaire à très haute température,
- Réacteur à eau supercritique,
- Réacteur nucléaire à sels fondus,
- Réacteur à neutrons rapides à caloporteur gaz,
- Réacteur à neutrons rapides à caloporteur sodium,
- Réacteur à neutrons rapides à caloporteur plomb.



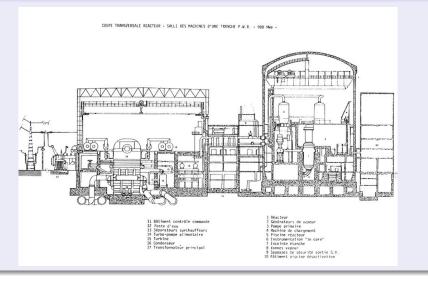
- Filières envisageables
 - Modérateurs
 - Caloporteurs
 - Enrichissement
 - Filières exploitées et en développement


Présentation détaillée des réacteurs à eau sous pression

Réacteur à eau sous pression

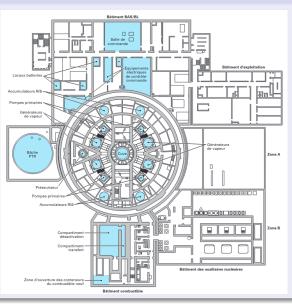

- Eau ordinaire, cycle indirect. Combustible UO_2 enrichi de 3% à 5% en $\frac{235}{92}U$.
- Oircuit primaire pressurisé à 155 bars.
- Oircuit secondaire fermé, cycle de Hirn-Rankine.

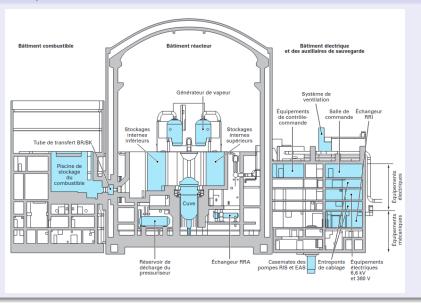
Capacité installée en France



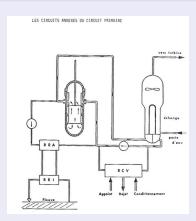
	CP0-CPY	P4-P4'	N4	EPR
Puissance électrique (MWe)	915	1320	1450	1600
Puissance ther- mique (MWth)	2785	3817	4270	4450
Nombre d'as- semblages	157	193	205	241
Hauteur active du cœur	3.66	4.3	4.3	4.2
Diamètre de la cuve	4	4.4	4.5	4.9
T primaire (OC)	286-322	293-329	292-330	295-330
Pression va- peur sortie GV (bars)	58	65	73	77
T vapeur (OC)	273	281	288	293
Nombre de ré- acteurs	32 (20 MOX)	20	4	0
Gestion du cœur	1/4 (MOX : 1/3)	1/3	1/4	1/3
	12 mois	18 mois	12 mois	18 mois?

Sites nucléaires


Plan de coupe d'une centrale palier 900 MWe

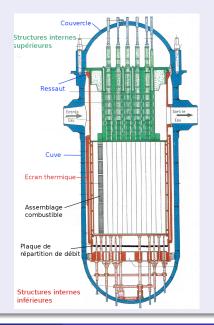

Plan de masse d'une centrale (Chooz)

Plan de masse réacteur


Plan de coupe réacteur

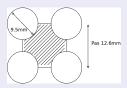
Circuit primaire (palier 900 MWe)

- Trois boucles dans un REP de 900 MWe:
- Rôle: produire les 2785 MW_{th}, les transférer au circuit secondaire;
- P = 155 bars, $T_f = 286^{\circ}$ C, $T_c = 322^{\circ}C$;
- Exercice : calcul du débit.

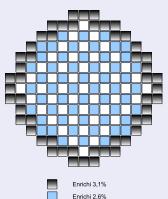

- RRA: réfrigération à l'arrêt;
- RRI : source froide du RRA.;
- RCV : contrôle volumétrique et chimique.

Réacteur

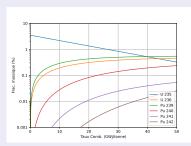
- Cuve et couvercle (données 900 MWe) :
 - $\Phi = 4 \text{ m}$
 - H = 12.3 m
 - e = 200 mm
 - 50 passages d'instrumentation
 - masse : 263 + 54 tonnes

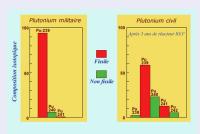

Structures internes inférieures :

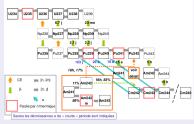
- alignement, canalisation fluide, protection cuve
- masse: 110 tonnes
- ightharpoonup écran thermique $e=68~\mathrm{mm}$
- Structures internes supérieures :
 - Positionnement grappes de commande
 - masse : 30 tonnes
- Combustible :
 - ► 157 assemblages
 - H = 3.66 m
 - masse $UO_2:80$ tonnes



Combustible



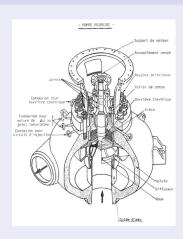

Combustible usé


Après 3 ans (33 GWj / tonne), il reste par tonne :

- 955 kg d'Uranium (dont 940 kg ²³⁸U et 10 kg ²³⁵U);
 - 10 kg Plutonium (6 kg ²³⁹Pu, 1 kg ²⁴¹Pu);
 - 34 kg de produits de fission hautement radioactifs;
 - 0.7 kg d'actinides mineurs de longue durée de vie.

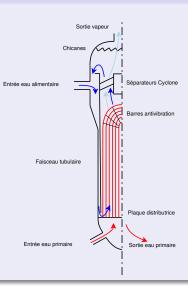
Retraitement? Recyclage? Déchets? Accumulation de Pu?

Chaîne de l'uranium : formation d'actinides


Activité du combustible usé

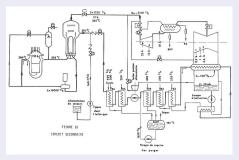
Pressuriseur & Pompe primaire

- Rôle : maintenir une pression de 155 bars.
- Situé sur une branche chaude.
- En jouant sur équilibre liquide / vapeur ($T_{sat} = 345^{\circ}$ C).
- Cannes chauffantes (1400 kW max, 100 kW en marche) et aspersion.
- Contrôle du niveau.



- Une / boucle (branche froide).
- Hélico-centrifuge mono-étage.
- $Q_{\rm V} = 20100~{\rm m}^3/{\rm h}, H_e = 84.5~{\rm m.c.e}, N = 1485~{\rm rpm}, P = 5~{\rm MW}.$

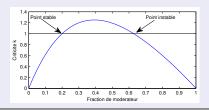
Générateur de vapeur


- Rôle : vaporiser eau du secondaire.
- Vaporisateur tubulaire à circulation naturelle, disposé verticalement
- Eau primaire : 3388 tubes (20 m, $\Phi = 22$ mm, e = 1 mm) en U immergés.
- Un / boucle, Puissance : 890 MW.
- Surface d'échange 4800 m².
- Séparateurs cyclones et recirculation, titre vapeur en sortie 0,998.
- 491 kg.s⁻¹, 55 bars ($T_{sat} = 268^{\circ}$ C).

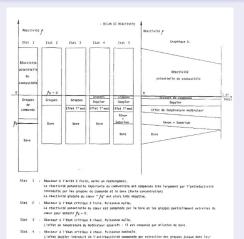
Circuit secondaire

- Particularité : pas de surchauffe initiale.
- Détente HP (un corps à 7 étages double flux),
 55 bars à 11 bars, titre en eau : 12%.
- Séparateur-surchauffeur.
- Détente BP 11 bars à 43 mbars (trois corps à 7 étages double flux).

Turbines particulières (grand débit, vitesse faible, mauvaise qualité de vapeur).



Contrôle-commande, régulation


- Contrôle-commande : mesures et pilotage.
- Instrumentation: Flux neutronique, Températures, Pressions, Débits.
- Régulations :
 - Température moyenne réacteur.
 - Pression primaire.
 - Niveau pressuriseur.

Réactivité et stabilité

- Criticité k : proportion des neutrons issus de fission donnant une fission. k = 1 ⇒ flux neutronique et puissance constants (réacteur critique).
- Réactivité $\rho = \frac{k-1}{k}$.
- Coefficient de réactivité $\frac{\partial \rho}{\partial T}$.

Exploitation

F. Ravelet (LIFSE)


Il apparaît les effets Ménon et Samarium qui appartent une antiréactivité compensée par le bore.

Graphique 6 : Il traduit l'évolution dens le teups du bilan de réactivite de l'état 5. jouyéu déchargement (fin de cycle). L'issure du combustible est abers composée par une d'Illuin ne born.

"zone de référence".

Etat 5 : Le Réacteur fonctionne à puissance nominale depuis quelques jours.

